

ELECTRON

Jurnal Ilmiah Teknik Elektro

[Home](#) [List of Issues](#) [Announcements](#) [Article Submission](#) [Bahasa/Language](#) [Contact](#) [Search](#)[Home](#) / [Archives](#) / [Vol. 6 No. 1: Jurnal Electron, May 2025](#) / [Articles](#)

Comparative Analysis of Haar Cascade Classifier, Dlib, and Mediapipe for Face Recognition

Elbert

Universitas Tarumanagara

Endah Setyaningsih

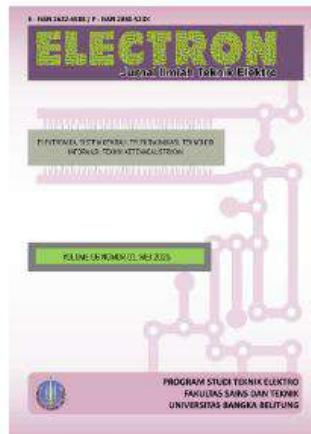
Universitas Tarumanagara

Lamto Widodo

Universitas Tarumanagara

<https://orcid.org/0000-0001-5103-3760>**DOI:** <https://doi.org/10.33019/electron.v6i1.240>**Keywords:** Face Recognition, Face Detection, Haar Cascade Classifier, Dlib, Mediapipe**Abstract**

Technological developments are having considerable effects on a lot of industries, particularly in the security sector. One of the important technologies in security sector is face recognition. Face recognition is a technology that verify and identify individual identity using face. There are many processes that involved in face recognition technology such as face detection methods. Face

 [PDF](#)Published
2025-05-31**Article Submission**[Submit Now](#) **Journal Accreditation Information**[Accreditation Decree](#)[Accreditation Certificate](#)**About the Journal**

ISSN ELECTRON
E-ISSN 2622-6588
P-ISSN 2830-523X

9 772830 523004

[List of Issues](#)

ELECTRON

Jurnal Ilmiah Teknik Elektro

[Home](#) [List of Issues](#) [Announcements](#) [Article Submission](#) [Bahasa/Language](#) [Contact](#) [Search](#)[Home](#) / [Editorial Team](#)

Editorial Team

Editor In Chief :**Ir. M. Yonggi Puriza, S.T., M.T.**

Electrical Engineering, Universitas Bangka Belitung, Indonesia

Journal Manager :**Almeera Amsana Rachmani**

Electrical Engineering, Universitas Bangka Belitung, Indonesia

Editorial Team Leader :**Welly Yandi, S.Pd., M.T.**

Electrical Engineering, Universitas Bangka Belitung, Indonesia

Editorial Team :**Arnawan Hasibuan, S.T., M.T., Ph.D.**

Electrical Engineering, Universitas Malikussaleh, Indonesia

Brainvendra Widi Dionova, S.ST., M.Sc.Eng

Electrical Engineering Department, Universitas Global Jakarta

Ir. Hanalde Andre, S.T., M.T.

Electrical Engineering, Universitas Andalas, Indonesia

Rika Favoria Gusa, S.T., M.Eng.

Electrical Engineering, Universitas Bangka Belitung, Indonesia

Article Submission[Submit Now](#) **Journal Accreditation Information**

Accreditation Decree

Accreditation Certificate

About the Journal

ISSN ELECTRON

E-ISSN 2622-6588

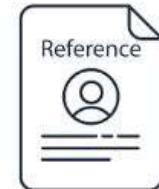
P-ISSN 2830-523X

9 772622 658008

ISSN 2830-523X

9 772830 523004

List of Issues**Aims and Scopes****Editorial Board and Reviewers****Authors Guidelines**

Reviewers :**Anisa Ulya Darajat, S.T., M.T.***Electrical Engineering, Universitas Lampung, Indonesia***Asmar, S.T., M.Eng.***Electrical Engineering, Universitas Bangka Belitung, Indonesia***Diyajeng Luluk Karlina, S.T., M.T.***Electrical Engineering Vocational Education, Universitas Sultan Ageng Tirtayasa***Dara Aulia Feryando, S.T., M.T.***Electrical Engineering, Politeknik Perkeretaapian Indonesia Madiun***Deri Latika Herda, S.T., M.T.***Electrical Engineering, Politeknik Negeri Padang, Indonesia***Ir. Fardhan Arkan, S.T., M.T.***Electrical Engineering, Universitas Bangka Belitung, Indonesia***Frenzi Agres Yudithia, M.T.***Electromedic Technology, Politeknik Kesehatan Siteba, Padang, Indonesia***Ir. Ghiri Basuki Putra, S.T., M.T.***Electrical Engineering, Universitas Bangka Belitung, Indonesia***Ir., Habib Satria, M.T, IPP***Electrical Engineering, Universitas Medan Area, Indonesia***Hajiar Yuliana, S.T., M.T.***Electrical Engineering, Universitas Jenderal Achmad Yani, Indonesia***Handoko Rusiana Iskandar, S.T., M.T.***Electrical Engineering, Universitas Jenderal Achmad Yani, Indonesia***Imil Hamda Imran, S.T., M.Sc., Ph.D.***ARC for Metrology, Standards & Testing, King Fahd University of Petroleum and Minerals, Kingdom of Saudi Arabia (KSA)***Iski Zaliman, S.Kom., M.Kom.***Informatics Engineering, Universitas Bangka Belitung, Indonesia***Jimmy Trio Putra, S.T., M.Eng.***Electrical Engineering, Vocational College, Universitas Gadjah Mada, Indonesia***Kiki Kananda, S.T., M.T.***Electrical Engineering, Institut Teknologi Sumatera, Indonesia***Legenda Prameswono Pratama, S.S.T., M.Sc.Eng***Electrical Engineering Department, Universitas Global Jakarta***Muhammad Jumnahdi, S.T., M.T.***Electrical Engineering, Universitas Bangka Belitung, Indonesia***Authors Guidelines****Peer Review Process****Publication Schedule****Publication Ethics****Plagiarism Policy****Publishing Fees****Notice on Copyrights and Licenses****Open Access Statements****Contact Us****Journal Template and IEEE Reference Guide****Visitors and Statistics**

3,155 Pageviews

May 2024 - June 2024

[View Electron Stats](#)

Kiki Kananda, S.T., M.T.

Electrical Engineering, Institut Teknologi Sumatera, Indonesia

Legenda Prameswono Pratama, S.S.T., M.Sc.Eng

Electrical Engineering Department, Universitas Global Jakarta

Muhammad Jannahdi, S.T., M.T.

Electrical Engineering, Universitas Bangka Belitung, Indonesia

Rizki Wahyu Pratama, S.T., M.T.

Electrical Engineering, Universitas Andalas, Indonesia

Sitti Amalia, M.T.

Electrical Engineering, Institut Teknologi Padang, Indonesia

Swadexi Istiqphara, S.T., M.T.

Electrical Engineering, Institut Teknologi Sumatera, Indonesia

Tianur, S.S.T., M.Eng.

Electronic Engineering, Politeknik Caltex Riau, Indonesia

Tri Hendrawan Budianto, S.T., M.T.

Electrical Engineering, Universitas Bangka Belitung, Indonesia

Triuli Novianti, S.T., M.T

Electrical Engineering, Universitas Muhammadiyah Surabaya

Umar Faruq Vista, S.Kom., M.Kom.

Informatics Engineering, Universitas Bangka Belitung, Indonesia

Ir. Wahri Sunanda, S.T., M.Eng., IPM., A.Eng.

Electrical Engineering, Universitas Bangka Belitung, Indonesia

Yandi Anzari, S.Kom., M.Kom.

Informatics Engineering, Universitas Nurdin Hamzah, Indonesia

Yohanes Calvinus, S.T., M.T.

Electrical Engineering, Universitas Tarumanagara, Indonesia

Web Admin:

Hendy, S.T.

Editorial Address:

Gedung Dharma Penelitian

Jurusan Teknik Elektro - Fakultas Teknik

Kampus Terpadu Universitas Bangka Belitung

Balunjuk, Kab. Bangka, Prov. Kep. Bangka Belitung

Whatapps : +62 898-9339-294

Website : <https://jurnalelectron.org/index.php/electronubb>

e-mail : jurnal.electron.ubb@gmail.com / jurnalelectron@ubb.ac.id

39775 [View Electron Stats](#)

Recommended Tools

Indexing

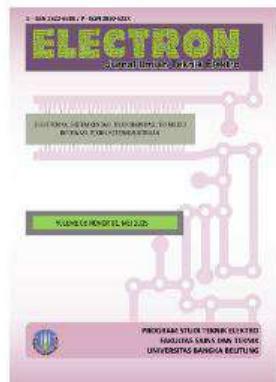
Information

[For Readers](#)

[For Authors](#)

[For Librarians](#)

Vol. 6 No. 1: Jurnal Electron, May 2025



Jurnal Electron Vol 6 No 1, May 2025 start from page 01 to 103 which consist of 10 articles in electrical engineering which include electronic, control, telecommunication, information and technology/informatics, and electricity engineering from several authors which are from both inside and outside the publisher institutions

DOI: <https://doi.org/10.33019/electron.v6i1>

Published: 2025-05-31

Full Issue

Volume 6, No 1. Mei 2025 (Bahasa Indonesia)

Articles

Comparative Analysis of Haar Cascade Classifier, Dlib, and Mediapipe for Face Recognition

Elbert, Endah Setyaningsih, Lamto Widodo

1 - 8

PDF

The PID System for Water Flow Control in Two Storage Tanks

Kartika, M. Fatan Naqi, Misbahul Jannah, Misriana

9 - 25

PDF (Bahasa Indonesia)

Article Submission

Submit Now

Journal Accreditation Information

Accreditation Decree

Accreditation Certificate

About the Journal

ISSN ELECTRON

E-ISSN 2622-6588

P-ISSN 2830-523X

ISSN 2830-523X

List of Issues

Aims and Scopes

Editorial Board and Reviewers

Authors Guidelines

Peer Review Process

Design and Development of Fire Detection System Using STC15F2K32S2 Microcontroller

Dwi Abrar Fatrunadi, Dwi Purwanti

26 - 38

[PDF \(Bahasa Indonesia\)](#)**Innovative Automatic Winding for Transformers: An Efficient Solution for Modern Transformer Production**

Mardiansyah, Heri Kusnadi, Firman Amir

39 - 46

[PDF](#)**Comprehensive Review: Disk Scheduling System Simulation with Various Algorithms Using OS Sim**

Fidel Lusiana Putri, Djuniadi, Febry Putra Rochim

47 - 55

[PDF \(Bahasa Indonesia\)](#)**Analysis of Distribution Network Reconfiguration Using Particle Swarm Optimization to Improve Voltage Stability Index**

Yoakim Simamora, Erita Astrid, Michael Fritz Immanuel, Bakti Dwi Waluyo, Muhammad Aulia Rahman Sembiring, Mega Silfia Dewy, Agnes Irene Silitonga, Lisa Melvi Ginting

[PDF \(Bahasa Indonesia\)](#)**Optimizing Battery's Remaining Useful Life Prediction using PSO-LSTM Model**

Wilson Wiranata, Yohanes Calvinus

64 - 71

[PDF \(Bahasa Indonesia\)](#)**Literature Review: Timing Analysis Based Anomaly Detection on Electric Vehicle CAN Bus**

Putu Ayu Citra Setiawan, Dayu Dwi, Ngurah Indra ER

72 - 84

[PDF \(Bahasa Indonesia\)](#)**Design of Throttle System for a Brushless DC Motor in an Electric Wheelchair**

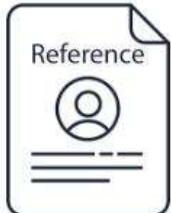
Ferdinand Natanael, Bagus Made Arthaya, Faisal Wahab

85 - 94

[PDF \(Bahasa Indonesia\)](#)**Deep Learning and Traditional Models for Wind Speed Forecasting in Saudi Arabia**

Ikhsan Hidayat, Mohammad Ali Abido

95 - 103

[PDF](#)**Publication Schedule****Publication Ethics****Plagiarism Policy****Publishing Fees****Notice on Copyrights and Licenses****Open Access Statements****Contact Us****Journal Template and IEEE Reference Guide****Visitors and Statistics**

5,259 Pageviews

May 20th - Jun 20th

Comparative Analysis of Haar Cascade Classifier, Dlib, and Mediapipe for Face Recognition

Analisis Perbandingan Haar Cascade Classifier, Dlib, dan Mediapipe untuk Pengenalan Wajah

Elbert¹, Endah Setyaningsih², Lamto Widodo³

^{1,2} Electrical Engineering Department, Faculty of Engineering Universitas Tarumanagara; email: ¹elbert.525210005@stu.untar.ac.id ²endahs@ft.untar.ac.id

³ Industrial Engineering Department, Faculty of Engineering Universitas Tarumanagara; email: ³lamtow@ft.untar.ac.id

[Received: 3 October 2024, Revised: 21 May 2025, Accepted: 26 May 2025]

Corresponding Author: Endah Setyaningsih

ABSTRACT — Technological developments are having considerable effects on a lot of industries, particularly in the security sector. One of the important technologies in security sector is face recognition. Face recognition is a technology that verify and identify individual identity using face. There are many processes that involved in face recognition technology such as face detection methods. Face detection is a process of searching for faces in images. Each face detection method has different way to searching the face in image. It can affect the performance of face recognition technology itself. In this study, an analysis comparison between different face detection methods for face recognition was carried out. Face detection methods that used in this study was haar cascade classifier, dlib, and mediapipe. Technology that used to identify faces was Convolutional Neural Network (CNN). CNN model was trained with different face detection methods. Then it was used to carry out a simulation in identifying faces. The result of the comparison was shown in the form of performance metrics. The performance metrics include confusion matrix, accuracy, precision, recall, and f1-score. Based on the simulation that has been carried out, CNN model with haar cascade classifier face detection method generated the highest accuracy value of 98%, precision value of 98.08%, recall value of 98%, and f1-score of 97.99%.

KEYWORDS — Face Recognition, Face Detection, Haar Cascade Classifier, Dlib, Mediapipe

INTISARI — Perkembangan teknologi mempunyai dampak yang besar terhadap banyak industri, terutama di sektor keamanan. Salah satu teknologi penting dalam bidang keamanan adalah pengenalan wajah. Pengenalan wajah adalah sebuah teknologi yang berfungsi untuk memverifikasi dan mengidentifikasi identitas individu menggunakan wajah. Terdapat banyak proses yang terlibat dalam teknologi pengenalan wajah salah satunya adalah pendekripsi wajah. Pendekripsi wajah merupakan proses pencarian wajah dalam sebuah gambar. Setiap metode untuk pendekripsi wajah memiliki cara yang berbeda-beda dalam mencari wajah pada gambar. Hal ini dapat mempengaruhi kinerja teknologi pengenalan wajah itu sendiri. Dalam penelitian ini, dilakukan analisis perbandingan antara berbagai jenis metode deteksi wajah untuk pengenalan wajah. Metode deteksi wajah yang digunakan dalam penelitian ini adalah haar cascade classifier, dlib, dan mediapipe. Teknologi yang digunakan untuk mengidentifikasi wajah adalah Convolutional Neural Network (CNN). Model CNN dilatih dengan metode deteksi wajah yang berbeda kemudian digunakan untuk melakukan simulasi dengan tujuan berupa mengidentifikasi wajah pada gambar. Hasil perbandingan tersebut ditampilkan dalam bentuk metrik kinerja. Metrik kinerja mencakup matriks kebingungan dan beberapa nilai berupa akurasi, presisi, penarikan kembali dan skor f1. Berdasarkan simulasi yang telah dilakukan, model CNN dengan metode deteksi wajah haar cascade classifier menghasilkan nilai akurasi tertinggi sebesar 98%, nilai presisi sebesar 98,08%, nilai penarikan kembali sebesar 98%, dan skor f1 sebesar 97,99%.

KATAKUNCI — Pengenalan Wajah, Pendekripsi Wajah, Haar Cascade Classifier, Dlib, Mediapipe

I. INTRODUCTION

Technology is developing quickly and widely as time goes by. Developments in technology are one of the things that drive people's lives to change. Technology advancements have led to the development of several industries, particularly in the security industry. Face recognition is an example of a technology that continues to develop in the security sector.

Face recognition is a method with facial recognition properties that is applied to existing systems or technology [1]. Face recognition identifies a person by using their facial features. This technology recognizes a person's face using artificial intelligence and image processing techniques. Face recognition is frequently used in security systems, such as for criminal identification and facility access. There are various processes that involved in face recognition. Face detection is one of the important processes in face recognition. Face detection is the process of searching for faces in the received image. There are several methods that can be used for face detection such as haar cascade classifier, dlib, and mediapipe. Every face detection technique uses a distinct way to determine the bounding box that contain face location. Bounding box is a technique that is able to mark faces on images in the form of images and frames [2]. The portion of the face that is used for recognition may not be the best if the bounding box is incorrect. For instance, it may be too big, too small, or it may not fit in the middle of the face. This could reduce the accuracy and have an impact on face recognition technology.

©The Author(s) 2025

This work is licensed under [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/)

Different types of face detection methods affect the accuracy of face recognition technology. It is necessary to conduct a study on the comparison of face detection methods to find the most appropriate approach for face recognition. Comparison of face detection methods is quite important to provide overview and suggestion for such approaches [3].

In this study, a comparative analysis of face detection methods in face recognition is conducted. Face detection methods that used in this study are haar cascade classifier, dlib, and mediapipe. Convolutional neural network (CNN) model is used to identify faces. The parameter used for this comparison are performance metrics include confusion matrix, accuracy, precision, recall, and f1-score. This study aims to compare and identify the most accurate face detection method for face recognition by convolutional neural network from these 3 approaches.

II. METHODOLOGY

This study focused on comparing the 3 CNN model that has been trained using haar cascade classifier, dlib, and media pipe face detection methods. This study was started by preparing dataset. Dataset that was used are face image of several subject. After obtaining dataset, the next step is device preparation and creating the CNN model. Then followed by training the CNN model with each face detection methods. After that, simulation was carried out to identify face in image. After simulation is done, it provides performance metrics including confusion matrix, accuracy, precision, recall, and f1-score for the comparison. The study stages flow is shown in Figure 1 below.

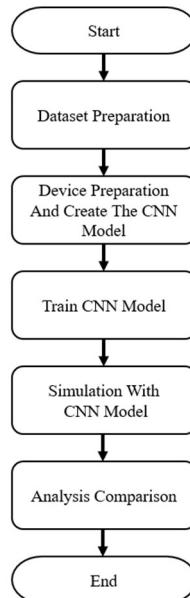


Figure 1. Study Stages Flow

A. DATASET PREPARATION

This phase involves the preparation of dataset that used in this research. The dataset that used are face images. The dataset used in this study contain 10000 images. This dataset includes facial images of 10 different subjects. Each subject has 1000 image consisting of 600 training images, 200 validation images, and 200 testing images for simulation.

B. DEVICE PREPARATION AND CREATE THE CNN MODEL

This phase involves the preparation of devices and creating the CNN model to support the implementation in comparative analysis of face detection method for face recognition. For device preparation, there are 2 categories of tools that are used. They are hardware and software. The hardware devices used in this study include a laptop with windows operating system. The hardware used in this study is a laptop with a windows operating system. The laptop that used in this study is asus X409FJ with Intel Core i7 8565U 1.8 GHz processor and 8.00 GB RAM. The software that used in this study are the visual studio code version 1.92.1. The desktop view of visual studio code is shown in Figure 2 below.

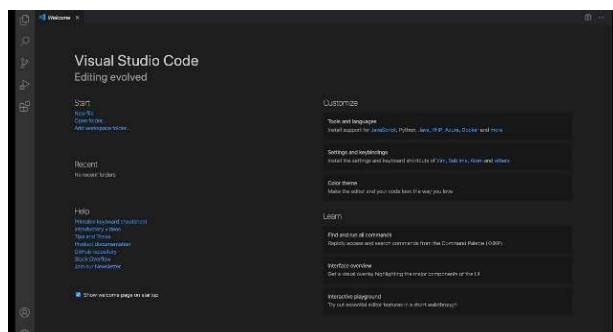


Figure 2. Visual Studio Code Desktop View

©The Author(s) 2025

This work is licensed under [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/)

Convolutional Neural Network (CNN) is a development of multilayer perceptron which is designed to process two dimensional data [4]. CNN can be used to process and analyze image. CNN are generally used to categorize images. In order to process data, CNN requires an architecture.

In general, CNN architecture consists of convolution, pooling, flatten and fully connected layer. Convolution layer is a layer that used to extract features from the image [5]. Pooling layer is a layer for reducing the size of image data with the aims to increase invariance position of features [5]. Flatten layer is a layer that convert the 2 dimensional data into 1 dimensional vector [6]. Fully connected layer is a layer that usually used to process the converted data so that it can be classified [5].

CNN also using activation function for feature extraction and classification. Activation function is a function that determines the output of a neuron either is linear or nonlinear [7]. Activation function is used in the end of each layer inside the neural network. Activation function that used in this CNN architecture are Rectified Linear Unit (ReLU) and Softmax. An example of CNN architecture is shown in Figure 3 below.

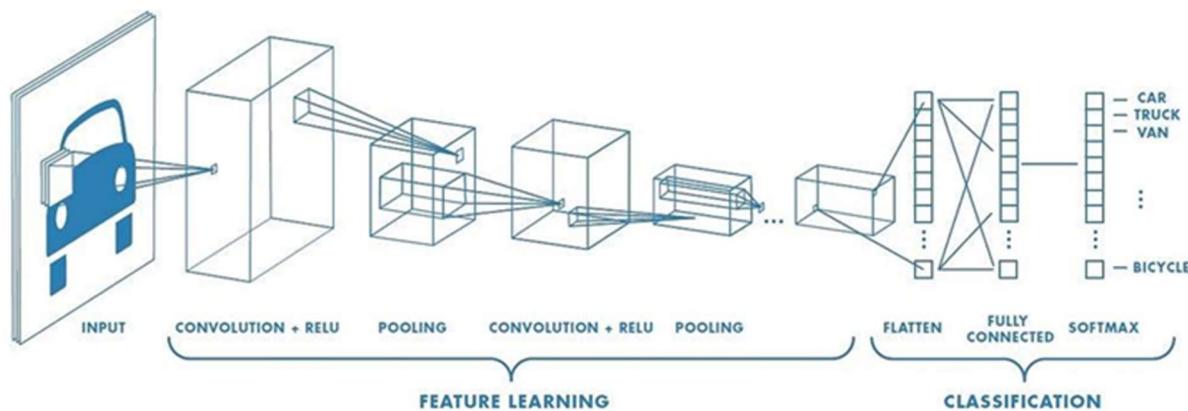


Figure 3. An Example of CNN Architecture [8]

ReLU is an activation function that converts linear values to nonlinear by activating and deactivating neurons [8]. ReLU change all the negative value to 0. If the value is positive, ReLU will maintain it. The equation for ReLU activation function is shown in (1) below.

$$f(x) = \max(0, x) \quad (1)$$

Based on equation (1), x is the input value [8]. ReLU usually used in convolutional layer for feature extraction. This function allows CNN to study more complex pattern. Softmax is an activation function that used to obtain output which are probability or classification values [8]. Softmax uses a set of values to determine a probability for every class so that the sum of all probabilities equals to 1. Softmax activation function usually used in the final layer with fully connected layer. The equation for softmax activation function is shown in (2) below.

$$f_i(\vec{v}) = \frac{e^{x_1}}{\sum_{j=1}^n e^{x_j}} \quad (2)$$

Based on equation (2.2), $f_i(\vec{v})$ is the probability of each class. e is the euler value equal to 2,71828183. v is the vector value for all class. n is the length of v . i is the position of the class value [8]. The CNN architecture in this study used 64 and 128 filter because it can capture simple and complex features for faces without taking long time to train the model. The CNN architecture that used in this study is shown in Table I.

TABLE I
CNN MODEL ARCHITECTURE

Layer	Layer Configuration
Convolution	64 filter, 3×3 kernel, and ReLU
Convolution	64 filter, 3×3 kernel, and ReLU
Pooling	2×2 kernel
Convolution	128 filter, 3×3 kernel, and ReLU
Convolution	128 filter, 3×3 kernel, and ReLU
Pooling	2×2 kernel
Flatten	10368 neuron
Fully Connected	128 neuron and ReLU
Fully Connected	64 neuron and ReLU
Fully Connected	10 neuron and Softmax

C. TRAIN CNN MODEL

After the CNN model was created, it will be trained using dataset and face detection methods. Dataset that used in this study for training the CNN model include 10000 images with 10 subjects. The CNN model will be trained using 3 different face detection methods, namely haar cascade classifier, dlib, and mediapipe.

Haar cascade classifier is a machine learning algorithm for object detection. Haar cascade classifier uses a filter called haar features [9] [10]. Haar features has a similar concept to the convolutional kernel [9]. It extracts features from images for object detection. There are several features that are extracted with this filter such as edge, line, and four rectangle features that are shown in Figure 4.

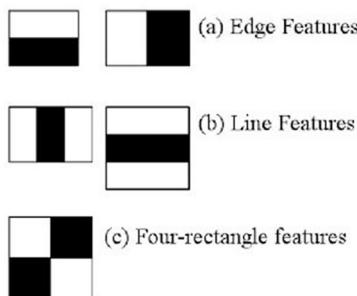


Figure 4. Features that Extracted with Haar Feature [9]

This filter will check one section at a time. For each section, the sum of the pixel intensities for the white and black section will be obtained. Then the difference between the sum of the 2 sections will be calculated. The difference value is the extracted feature value. Then there will be multilevel classification to determine the section that has the part of object or not. Workflow of the multilevel classification is shown in Figure 5 below.

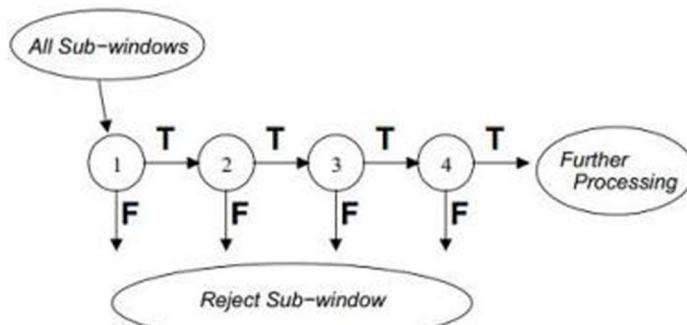


Figure 5. Workflow of Multilevel Classification [11]

In the initial level of classification, one characteristic will be used to classify each section. For example, when a section fulfills the criteria for haar features it is classified as True (T) else False (F). As the level of classification rise, more specific requirements are needed for categorization. Haar cascade classifier can be used to detect various type of object including human faces.

Dlib is an open source library that offers a C++ development environment [12]. Dlib can be used for detect face in image. Dlib using Histogram of Oriented Gradients (HOG) with Support Vector Machine (SVM) algorithm for face detection [12]. HOG is used for extract features from images. Then SVM will determine parts that contain face and non-face.

HOG extract features on image by converting image in color format Red, Green, and Blue (RGB) into grayscale then calculate the gradient value of each pixel in the image. Each image has unique characteristic. This can be seen in the gradient distribution that is produced by splitting the image into tiny sections know as HOG cell [12]. Each HOG cell contain histogram of a gradient that represent an object [12]. HOG will produce a vector array from pixel that has a histogram. Image transformation using HOG is shown in Figure 6 below.

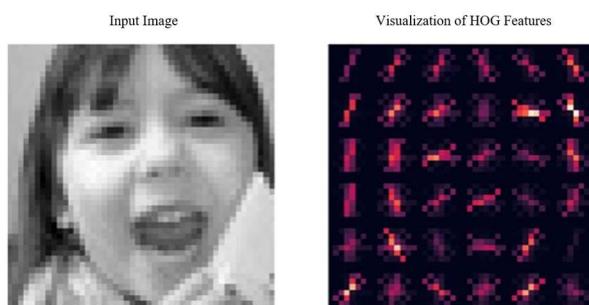


Figure 6. Image Transformation using HOG [13]

The vector array from HOG will be used for SVM for classify part that has face and not. The vector array will be inputed into SVM. SVM will use hyperlane for classify the input data [14]. It will separate the value with face part and without it.

Mediapipe is an open source machine learning framework that can used on various programming languages and platform [15]. This framework simplifies the process of implementing complex machine learning models. Mediapipe uses blazeface algorithm to detect human face in image. Blazeface is an algorithm that used to identify the center of face with concentrating on mouth center, eye center, ear lobe, and tip of the nose [15]. Blazeface can be used for various task related to face classification, segmentation, facial features, and expressions. Blazeface uses 468 face landmark for various task related to face including detection [15] [16]. Face landmark that detected with blazeface is shown in Figure 7.

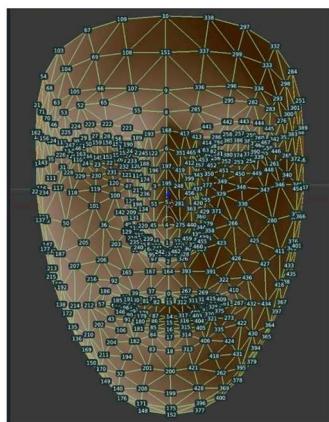


Figure 7. 468 Face Landmark Point with Blazeface Mediapipe [15]

D. SIMULATION WITH CNN MODEL

When the CNN model training was done, it is used for face identification simulation. Dataset that are used for this simulation are 2000 images consisting of 10 subjects. Each model with different face detection method will perform the simulation. The result of simulation is shown in the form of performance metrics. Block diagram for this simulation is shown in Figure 8.

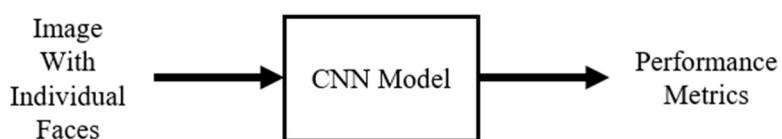


Figure 8. Block Diagram for Simulation

E. ANALYSIS COMPARISON

Analysis comparison is carried out after each CNN model has finished identifying the given data. The performance metric produced by each model are used to compare and identify the most accurate face detection method for face recognition. Performance metrics include several things, namely the confusion matrix, accuracy, precision, recall, and f1-score. Confusion matrix is a table that states the quantity of data from correct and incorrect test [17]. There are four terms as a representation of the classification results in confusion matrix. The four terms are True Positive (TP), True Negative (TN), False Positive (FP), and False Negative (FN) that can be viewed in Figure 9.

		TRUE VALUES	
		TRUE	FALSE
PREDICTION	TRUE	TP <i>Correct Result</i>	FP <i>Unexpected Result</i>
	FALSE	FN <i>Missing Result</i>	TN <i>Correct absence of result</i>

Figure 9. True Positive, True Negative, False Positive, and False Negative in Confusion Matrix [18]

True Positive is a positive value that is detected correctly. True Negative (TN) is the number of negative data that is detected correctly. False Positive (FP) is negative data but detected positively and False Negative (FN) is negative data detected as negative data [18]. These 4 values also used to generated accuracy, precision, recall, and f1-score. Accuracy is the ratio of correctly predicted observations to all observations [19]. Precision is the ratio of correctly predicted positive observations to the all positive observations [19]. Recall is the ratio of correctly predicted positive observations to all observations in actual class [19]. F1-score is the average value of precision and recall [19]. The performance metrics can be generated by using formula that was shown in Table II.

TABLE II
ACCURACY, PRECISION, RECALL, AND F1-SCORE FORMULA [20]

Metrics	Formula
Accuracy	$\frac{TP + TN}{TP + TN + FP + FN}$
Precision	$\frac{TP}{TP + FN}$
Recall	$\frac{TP}{TP + FP}$
F1-Score	$2 \times \frac{Recall \times Precision}{Recall + Precision}$

III. RESULT AND DISCUSSION

The results of simulation are discussed in this section. The simulation is carried out with 3 CNN model with different face detection method. The results of simulation are shown in the form of performance metrics including confusion matrix, accuracy, precision, recall, and f1-score. Confusion matrix is a method that is usually used to calculate accuracy. The confusion matrix also displays the number of correctly and incorrectly identified face in image for each subject. The confusion matrix for each model is shown in Figure 10.

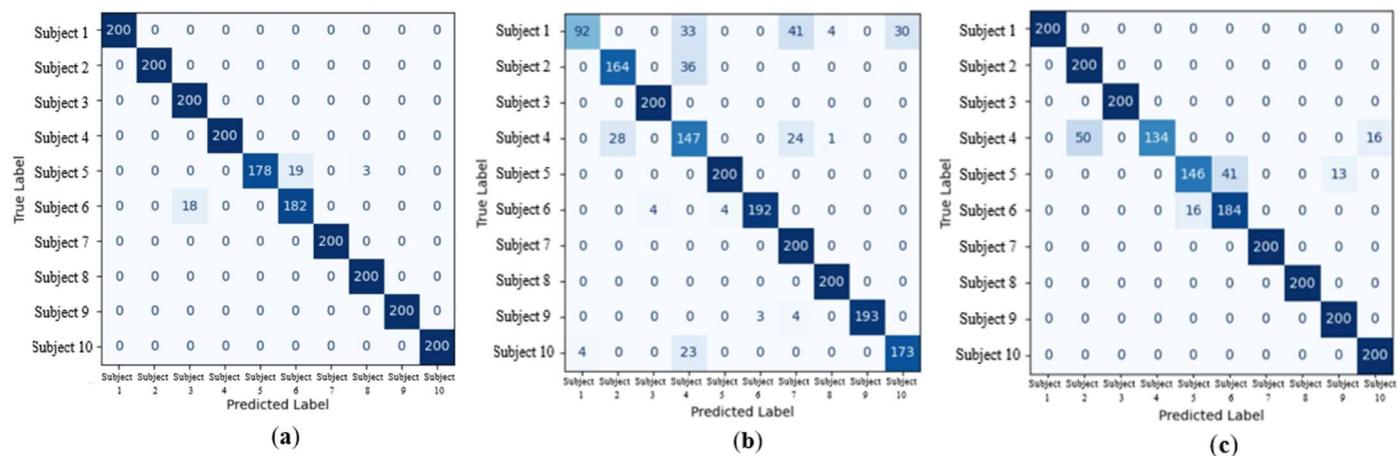


Figure 10. (a) Confusion Matrix CNN Model Using Haar Cascade Classifier, (b) Confusion Matrix CNN Model Using Dlib, (c) Confusion Matrix CNN Model Using Mediapipe

The accuracy, precision, recall, and F1-score were generated based on the performance of each CNN model. There are various value that was obtained with haar cascade classifier, dlib, and mediapipe face detection method. The accuracy, precision, recall, and f1-score value that was obtained using different face detection method is shown in Table III, Table IV, Table V, and Table VI respectively.

TABLE III
ACCURACY VALUE WITH HAAR CASCADE CLASSIFIER, DLIB, AND MEDIAPIPE FACE DETECTION METHOD

Face Detection Method	Accuracy Value
Haar Cascade Classifier	98%
Dlib	88.05%
Mediapipe	93.19%

TABLE IV
PRECISION VALUE WITH HAAR CASCADE CLASSIFIER, DLIB, AND MEDIAPIPE FACE DETECTION METHOD

Face Detection Method	Precision Value
Haar Cascade Classifier	98.08%
Dlib	89.44%
Mediapipe	93.83%

TABLE V
RECALL VALUE WITH HAAR CASCADE CLASSIFIER, DLIB, AND MEDIPIPE FACE DETECTION METHOD

Face Detection Method	Recall Value
Haar Cascade Classifier	98%
Dlib	88.05%
Mediapipe	93.2%

TABLE VI
F1-SCORE VALUE WITH HAAR CASCADE CLASSIFIER, DLIB, AND MEDIPIPE FACE DETECTION METHOD

Face Detection Method	F1-Score Value
Haar Cascade Classifier	97.99%
Dlib	87.61%
Mediapipe	92.93%

IV. CONCLUSION

Based on the results of the simulation that has been carried out, it can be concluded that face recognition technology is influenced by the face detection method that is being used. The CNN model using haar cascade classifier face detection method has the highest accuracy value of 98%, precision value of 98.08%, recall value of 98%, and f1-score of 97.99%. Haar cascade classifier has the highest value possibly because it tends to produce more consistent bounding boxes than dlib and mediapipe, which tend to focus on facial landmarks. Haar cascade classifier can be developed through real-time application and using databases for large amounts of subject data.

CONFLICT OF INTEREST

The authors state that no potential conflict of interest exists related to this article.

ACKNOWLEDGMENT

The authors would like to thank Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) Universitas Tarumanagara for the support given.

REFERENCES

- [1] R. N. Pamungkas, D. Wahiddin, and T. Al Mudzakir, "Sistem Presensi Pegawai Menggunakan Face Recognition dengan Algoritma Local Binary Pattern Histogram (LBPH)," *Scientific Student Journal for Information, Technology and Science*, vol. IV, no. 1, pp. 123–128, 2023, [Online]. Available: <https://e-journal.lppmunsera.org/>
- [2] H. Riski and D. W. Utomo, "Algoritma Principal Component Analysis (PCA) dan Metode Bounding Box pada Pengenalan Citra Wajah" *Jurnal Informatika: Jurnal Pengembangan IT*, vol. 9, no. 1, pp. 72–77, 2024, doi: 10.30591/jpit.v9i1.6165.
- [3] Lia Farokhah, "Perbandingan Metode Deteksi Wajah Menggunakan OpenCV Haar Cascade, OpenCV Single Shot Multibox Detector (SSD) dan Dlib CNN," *Jurnal Rekayasa Sistem dan Teknologi Informasi*, vol. 5, no. 3, pp. 609–614, 2021, doi: 10.29207/resti.v5i3.3125.
- [4] Verdy and Ery Hartati, "Klasifikasi Penyakit Mata Menggunakan Convolutional Neural Network Model Resnet-50," *Jurnal Rekayasa Sistem Informasi dan Teknologi*, vol. 1, no. 3, pp. 199–206, 2024, doi: 10.59407/jrsit.v1i3.529.
- [5] A. S. Riyadi, I. P. Wardhani, and S. Widayati, "KLASIFIKASI CITRA ANJING DAN KUCING MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)," in *Seminar Nasional Teknologi Informasi dan Komunikasi STI&K*, 2021, vol. 5, no. 1, pp. 307–311. [Online]. Available: <https://ejournal.jak-stik.ac.id/files/journals/2/articles/sentik2021/2857/submit/proof/2857-13-1919-1-10-20210902.pdf>
- [6] A. Firmansyah, A. F. Itsnan, A. Apip, R. T. Mulliya, and P. Rosyani, "SISTEM ABSENSI MAHASISWA MENGGUNAKAN FACE RECOGNITION DENGAN ALGORITMA CNN," *Jurnal Artificial Intelligent dan Sistem Penunjang Keputusan*, vol. 1, no. 4, pp. 250–258, 2023.
- [7] N. A. Purwitasari and M. Soleh, "IMPLEMENTASI ALGORITMA ARTIFICIAL NEURAL NETWORK DALAM PEMBUATAN CHATBOT MENGGUNAKAN PENDEKATAN NATURAL LANGUAGE PROCESSING," *Jurnal IPTEK*, vol. 6, no. 1, pp. 14–21, 2022, doi: 10.31543/jii.v6i1.192.
- [8] K. R. Wardani and L. Leonardi, "KLASIFIKASI PENYAKIT PADA DAUN ANGUR MENGGUNAKAN METODE CONVOLUTIONAL NEURAL NETWORK," *Jurnal Tekno Insentif*, vol. 17, no. 2, pp. 112–126, 2023, doi: 10.36787/jti.v17i2.1130.
- [9] S. Yulina, "PENERAPAN HAAR CASCADE CLASSIFIER DALAM MENDETEKSI WAJAH DAN TRANSFORMASI CITRA GRayscale MENGGUNAKAN OPENCV," *Jurnal Komputer Terapan*, vol. 7, no. 1, pp. 100–109, 2021, doi: 10.35143/jkt.v7i1.3411.
- [10] A. R. Doni Karseno, Yuhandri, "PENERAPAN ALGORITMA HAAR CASCADE CLASIFIER DAN COMPUTER NEURAL NETWORK SEBAGAI PRESENSI KARYAWAN," *KomtekInfo*, vol. 11, no. 4, pp. 398–408, 2025, doi: 10.35134/komtekinfo.v12i1.565.
- [11] C. A. Pauzi, A. B. Yahya, F. T. Wildan, and A. Hidayatulloh, "PENERAPAN HAAR CASCADE CLASSIFIER DALAM PENGENALAN POLA BENTUK WAJAH MENGGUNAKAN OPENCV," *Jurnal AI dan SPK : Jurnal artificial Intelligent dan Sistem Penunjang Keputusan*, vol. 2, no. 1, pp. 7–15, 2024.
- [12] R. P. H. Sejati and R. Mardhiyyah, "DETEKSI WAJAH BERBASIS FACIAL LANDMARK MENGGUNAKAN OPENCV DAN DLIB," *Jurnal Teknologi Informasi*, vol. 5, no. 2, pp. 144–148, 2021, doi: 10.36294/jurti.v5i2.2220.
- [13] M. V. Overbeek, "HISTOGRAM OF ORIENTED GRADIENT UNTUK DETEKSI EKSPRESI WAJAH MANUSIA," *High Education of Organization Archive Quality: Jurnal Teknologi Informasi*, vol. 10, no. 2, pp. 81–86, 2018, doi: 10.52972/hoaq.vol10no2.p81-86.
- [14] K. A. Putri, F. Utaminingrum, and R. Maulana, "DETEKSI DINI TANGGA TURUN MENGGUNAKAN METODE HOG (HISTOGRAM OF ORIENTED GRADIENTS) DAN SVM (SUPPORT VECTOR MACHINE) BERBASIS RASPBERRY PI," *Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer*, vol. 5, no. 2, pp. 717–723, 2021.
- [15] S. Sugeng and T. N. Nizar, "DETEKSI AKTIVITAS MATA, MULUT DAN KEMIRINGAN KEPALA SEBAGAI FITUR UNTUK DETEKSI KANTUK PADA PENGENDARA MOBIL," *Komputika : Jurnal Sistem Komputer*, vol. 12, no. 1, pp. 83–91, 2023, doi: 10.34010/komputika.v12i1.9688.
- [16] F. Badri, S. Umie, R. Sari, S. Anuar, and B. Hamzah, "ANALYSIS OF DRIVER DROWSINESS DETECTION SYSTEM BASED ON LANDMARKS AND MEDIAPIPE," *Inform : Jurnal Ilmiah Bidang Teknologi Informasi dan Komunikasi*, vol. 10, no. 1, pp. 21–28, 2025.
- [17] D. Normawati and S. A. Prayogi, "IMPLEMENTASI NAÏVE BAYES CLASSIFIER DAN CONFUSION MATRIX PADA ANALISIS SENTIMENT BERBASIS TEKS PADA TWITTER," *Jurnal Sains Komputer & Informatika (J-SAKTI)*, vol. 5, no. 2, pp. 697–711, 2021.
- [18] L. Mutawalli, M. T. A. Zaen, and W. Bagye, "KLASIFIKASI TEKS SOSIAL MEDIA TWITTER MENGGUNAKAN SUPPORT VECTOR MACHINE (STUDI KASUS PENUSUKAN WIRANTO)," *Jurnal Informatika dan Rekayasa Elektronik*, vol. 2, no. 2, p. 43, 2019, doi: 10.36595/jire.v2i2.117.

©The Author(s) 2025

This work is licensed under [Creative Commons Attribution 4.0 International](https://creativecommons.org/licenses/by/4.0/)

- [19] S. Rao, P. Poojary, J. Somaiya, and P. Mahajan, “A COMPARATIVE STUDY BETWEEN VARIOUS PREPROCESSING TECHNIQUES,” *International Journal of Engineering Applied Sciences and Technology*, vol. 5, no. 3, pp. 431–438, 2020.
- [20] D. Atmajaya, A. Febrianti, and H. Darwis, “METODE SVM DAN NAIVE BAYES UNTUK ANALISIS SENTIMEN CHATGPT DI TWITTER,” *The Indonesian Journal of Computer Science*, vol. 12, no. 4, pp. 2173–2181, 2023, doi: 10.33022/ijcs.v12i4.3341.

