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Abstract  — The robust dimension reduction for
classification of two dimensional data is discussed in this
paper. The classification process is done with reference
of original data. The classifying of class membership is
not easy when more than one variable are loaded with
the same information, and they can be written as a near
linear combination of other variables. The standard
approach to overcome this problem is dimension
reduction. One of the most common forms of
dimensionality reduction i the principal component
analysis (PCA). The two-dimensional principal
component (2DPCA) is often called a variant of principal
component. The image matrices were directly treated as
2D matrices; the covariance matrix of image can be
constructed directly using the original image matrices.
The presence of outliers in the data has been proved to
puse a serious problem in dimension reduction. The first
component consisting of the greatest variation is often
pushed toward the anomalous observations. The robust
minimizing vector variance (MVV) combined with two
dimensional projection approach is used for solving the
problem. The computation experiment shows the robust
method has the good performances for matrix data
classification.

Keywords: 2DPCA. PCA. outlier, robust, sensitivity, vector
variance, wishart distribution

. INTRODUCTION

LASSIFICATION is one technique of data

mining o predict an object 0 a certain class
based on information in one or more characieristics of
data. As with most dala mining solutions, a
classification usually comes with a degree of certainty.
It might be the probability of the object belonging to
the class or it might be some other measure of how
closely the object resembles other examples (rom that
class. This paper discusses the new measure of
classification by combining of two advantages from
wo approaches; the two-dimensional (2D) projection
approach and the robust approach.

The principal components analysis (PCA) is
primarily a data analytic technique describing the
variagnce covariance structure through a linear

transformation of the original variables, Jollite [4].
The technique is the most popular among the
dimension reduction analysis which is used to
transform the original set of variables into a smaller
set of linear combinations that accounts for most of
the original set variance. The first principal

434

component is the combination of wvariables that
explains the greatest amount of wvariation. One
disadvantage of PCA is the high computation.

Yang et. al [6] proposed the two-dimensional
Principal ~ Component (2DPCA)  for  reducing
compuiational time of standard PCA. The 2DPCA is
ofien called as a variant of principal component
(PCA). In the 2DPCA, the image mairices were
directly treated as 2D matrices; the images do not
need o be (ranstormed into a vector so that the
covariance matrix of image can be constructed
directly using the original image matrices. Compared
with PCA, 2DPCA is more ef licient.

The decomposed information variation of classical
PCA and 2DPCA becomes pointless it outliers are
present in the daia. The decomposed classical
covariance matrix is verv sensilive to outlying
observations. The first component consisting of the
greatest  variation is  often  pushed toward the
anomalous observations. Anscombe [2] calegorized
outliers into two majors: those arising Irom errors in
the data and those arising from the inherent variability
of the data. The several causes of data errors are the
experimental error. human error, and instrument error.
An outlier is often difficult to be identified through
visual inspection without the analvtic tools. The
ditficulty becomes harder when data size is in larger
dimension.

The classical estimates such as the sample mean
and covariance are very sensitive lo outlier. even by a
single outlier. One or more outliers can significantly
shitt the mean and increase the dispersion of variance.
The presence of outliers can lead to inflated error rates
and substantial distortions of parameter. Robust
approach is one method believed 10 be able 10 detect
outliers well. In this paper. author introduces the
robust 2DPCA for handling outlier in the process of
2D projection.

The robust method deals with a very real problem
in statistical applications. the robust estimaior provide
a good solution when the data contain outliers, The
word ‘robust’” is loaded with many—sometimes
inconsistent—connotations.  Major goal of robust
statistics is to develop methods that are robust against
the possibility that one or several unannounced
outliers may occur anywhere in the data, Hampel [3].
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There are some robust criteria proposed to get an
effective estimator. The most well known crilerion is
to minimize the volume of ellipsoid of a parallelotop.
The minimum covariance determinant (MCD) is a
robust high break down point method using minimum
volume ellipsoid, Rousseuw [8]. MCD has an
important role in the application of data mining. but
the one lack property of MCD is the determinant of
covariance matrix equal zero is not certainly implies

that a random vector X is of degenerate distribution

in the mean tor 4 . MCD approach requires a

condition that the covariance matrix must be non
singular. Herwindiati et. al [I] proposed robust
minimum vector variance to overcome the difficulties
of MC

The minimum vector variance (MVV) is a robust
method that uses the minimum of a square of length of
a parallelotope diagonal to estimate the location and
scatter.  MVV is robust high breakdown point
generated from vector variance (VV) as mullivariate
dispersion [1]. The objective of paper is 1o propose the
robust minimizing vector variance in 2D projection
process for classification of mix p arbitrary matrix

data. The aspect of theoretical distribution for
sensitivity is also discussed o see the robusiness of
measure.

[I. CLASSIFICATION OF MATRIX DATA USING THE
CLASSICAL 2DPCA

Two dimensional Principal Component (2DPCA)
was proposed by Yang etal [6]. The method using the
pro jection technique is developed for the grayv scale
face recognition. Though the 2DPCA is often called as
a variant of principal component (PCA), the 2DPCA
has two important benefits over PCA: it is ecasier to
evaluate the covariance matrix and it uses less time for
determining the eigenvectors. In the 2DPCA. the
image matrices were directly treated as 2D matrices:
the images do not need to be transformed into a vector
so that the covariance matrix of image can be
constructed directly using the original image matrices.

Consider X, X, -~

is a mx prandom image
matrix, let ¥ is an p-dimensional unitary column

vector, the idea of 2DPCA is 1o project X onto | by
linear transformation

F=XFP (I

Define the covariance matrix

.5 Ei(X - EX)T (X- EX):| which is a px p non

image

negative definite matrix. The covariance matrix of
projected featre of sample is defined s

SI‘.=|;'I:' {X-EX) [X-EX) ||":I7' 5.\;I_'

Suppose there are N image malrices {X.}=
i=1,2;- and denole the average image as
- P
X= - ZX, .then §,, can be evaluated by

. I N - ¥ _
S, :TZ{XI-.\) (x.,-x] 2)
- =l

To have the optimal projection direction of 2DPCA.

S, has the important rule. the I_'v is the eigenvector

o
ol' S, corresponding to the largest eigenvalue. A set
orthonormal projection directions !_'I, [ ~ are the
orthonormal eigenvector of 5, corresponding to the

4 o =

d largest eigenvalues, ic
Projecting a matrix X onto l'm is

V=XV, k=12, (3)

The descriptions of lornwla (1) until formula (3)
give us the comprehension that the 2DPCA takes to
less time than PCA far classification, because the size
of' 8, isonly pxp.

Principal component analysis (PCA) is  well
established dimension reduction technique. To differ
from 2DPCA. all of the 2D data must be previously
transformed into 1D vector before the data will be
processed by PCA approach. The transformation leads
to a high dimensional vector space.  Consider
Xy X isa mxp random image matrix, the
N image matrices were transformed into 1D wvector
1% mp. The dimensional o PCA covariance matrix

S. is mp by mp. The large size covariance matrix

5, makes the computation becomes time consuming.

[1l. CLASSIFICATION OF MATRIX DATA USING THE
ROBUST 2DPCA

In this section author will discuss the robust
2DPCA using the measure minimizing veclor variance
(MVV). The robust 2DPCA is primarily a robust
approach describing the variance covariance structure
through a linear wansformation of the original
variables. The technigue is a useful device for
representing a sel of variables by a much smaller set
of composite variables that account for much of the
variance among the set of original variables. The data
reduction based on the classical approach becomes
unreliable if outliers are present in the data. The
decomposed classical covariance matrix is very
sensitive 0  outlying observations. The first
component consisting of the greatest variation is ofien
pushed toward the anomalous observations,

Minimum Vector Variance (MVV) & method by
using the minimization of vector variance (VV)
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criteria to identity the outliers. The estimator MVV
for the pair (fh2) is the pair (T, C,,,) giving
minimum vector variance. The MVV estimator can
be computed by the following description. given
random samples .‘ Xz,
taken from a p-variate distribution of location
parameter ;4 and a positive definite cova"noe
matrix Z. Suppose T,,, and C,,, are MVV

eslimators for location parameters and covariance
matrix. Both estimators are defined based on a set

of dimension n

+p+1 . .
« ;JF—} data points which

HcX consist of it ={

gives covariance matrix C,,,. of minimum T;‘(Cfn.,]
among all possible A data, see Herwindiati etal [I].
Then,

,, I =
/= ™ - (4)

Cuar :% Z,qu(‘\ﬂ =l & =Ly ) (5

The algorithm of MVV robust 2DPCA has no
significant ditference with MVV robust PCA except
for the eriterion projection. The proposed method is
not focused on face detection, the paper is purposed to
classify a general problem o a matrix data. The
algorithm of the MVV robust 2DPCA has three
stages. Suppose X, X, - is a mx p random
image matrix.

Stage | Start with a construction the covariance
matrix by using the N original two
dimensional (2D) matrices. Find the
orthonormal eigenvectors corresponding to
the d largest eigenvalues S_\. :

'?u,,, =|_i7;s V,,--- . Projecting a matrix X

onto F, s ¥, =X

Ca |_

s w=lidyr

Stage 2 Estimate the location and covariance matrix
of projected matrix X, using MVV
robust approach.

I. Let H, be an arbitrary subset containing

n+k+1 . "
=[——E-——} matrix data points. Compute

the average matrix as >_(,, and covariance
matrix 5, of all observations belonging to
H,, Then
k=12,

calculate B

=(X-X,,, ).
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=]

Compute d; (i)=1r8; D, foalli=12

. N where [),\d is defined & mean of m
rows in each & column k=1,2,++
Sort these distances in increasing order
4. Define H,. = [.i‘,,,,._i',“]'..‘

[

vy

.Sy _.and dy_ (i)

n

Calculate )_(”‘_
6. If Ilr:{iif,___~ ) = (), repeat step [ 10 3
If ?}'{ S - )— process is

stopped. .
Otherwise, the process is continued until the r-

th iteration if
TS 27r(S) 2 Tr(8]) 2 1)=T(S])

r(S,). the

Thus, we get
Tr(S) zTe(8}) 2T (1) 2 -

)-m(s)

Stage 3 Classify the matrix data based on robust

MVV distance
dip (1) = Do S5, Dagns Fcalli= 1,2, N (6)

IvV. CowmpPaRrISON RESULT oF CLASSIC 2DPCA AND
RosusT 2DPCA

To compare the classification process of classics
and MVV robust 2DPCA. we do several experiments,

A The Classification of Two Ob jects

Starting with the classitication of two object types.
there are (30x30) pixels of 50 grass images and 23

ocean images.

Fig. | Two Objects tor Classilication Grass and Ocean

The extraction of object features based on RGB
color spaces are t be used as elements in the
classification. The classical classitication of 2DPCA is
unable © hold the wo significant variations of grass
and ocean: conseqguently. the objects are not separated
well (see Figure 2A). The classic 2DPCA is not robust
to outlier. The occurrence of one or more outliers can

shift a data center X' to keep away from a location of
main data, so that the masking eflect is nol avoidable.
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The MVV robust 2DPCA is going 1o be used for
improving classification process. The MVV robust
2DPCA gives a beter classification (see Figure 2B).

B. The Classification of Three and Four Ob jects

More than two object types are to be tried for
classification. The authors want w know how the
number of classes affects the classification process.

Fig. 3 Three Objects for Classification: Grass, Ocean
and Sand

The three and four objects have no significantly
intluence over MVV 2DPCA in the classification
process. The new characteristics are still able w be
classified definitely (see Figure 5B and 6B).
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The outcomes of experiment tell us that the robust
MVV  2DPCA is a powerlul approach for
classification, even when new objects are added in the
datasel.

V. THE SENSITIVITY OF CLASSICAL AND ROBUST
METHOD TO QUTLIER

The good performance of robust methods is
exhibited in Section V. The main problem of classical
method is that the location estimator shifis closer to
outliers. The occurrence ol one or more outliers shifis
the mean vector toward outliers and the covariance
matrix becomes intlated.

Outlier can be considered as an influential
observation. An observation is called influential if its
deletion would cause major changes in estimates. The
influential observation can significantly change an
estimator.

The estimator is said o be insensitive if there is no
significant change due to removal of outlier. There
arc many ways lo measure lhe sensitivity; this paper
brings simple discussion, both on computation and the
theoretical distribution.

Theorem:

Suppose X, )_(]_. 'y are random sample of size
1 of a probability distribution having mean # €
where p=2 is an integer and the covariance matrix

Z is of positive definite. Then the random vector

—

—;=~MC"[-§’,—5J-’~ v, (0.1,) M

where X, =YX, CC =L

Consider data set X = {XI, Xy o of p

variate, the scatter matrix of sample A is

A=Z(§,—X}l2\"'!—)(1 8)

n
J=l
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where X =-~ ZA’ ,» X is the sample's mean vector.
R i

From equation (5), the malrix A is of
Wishart distribution with parameter L and the degree
of freedom n—1I. written as A~—Il-’ﬁ{2.n—l). A s

scatter

independent of X .
Detine A_, the scatter matrix removing the fi

ah

observalion. say the /™ observation is an outlying

observation. The scatter matrix A ; is formulated as
A=Y (\ X (X, =X ) 9)

where X, =— X
=l .
The scatter matrix A, is of Wishart distribution
with parameter £ and the degree of freedom n—2
A ~ !l;,(!‘..n—l} . Based on two formulas, the ratio
of scatter matrix as the consequence of removal the
observation is given by
Al
oAl s+

(10)

E=J?LT—X)

and R, can be shown of

¥ T, ™
hem{ip—lzﬁ
2 v

)

distribution

The rativ R,

]

is close w | means

that no significant change due o the removal of that
observalion.
In this case, the estimator is said lo be insensilive lo
I n—p-—1 2
an outlier when R, > bem[ it A ...-‘-L 1 ]

In application on data mining, it is often found
problems of more than one outlier, so the masking
effect is unavoidable. This section discussed the
sensitivily of estimator when there is & outliers (k > 1).

Suppose the group consists of & outliers, the scatter
matrix A, , a a consequence of the removal of I
group, is of distribution A, ~W, [Z, m}. Matrix 4
can be decomposed as A=A + B and B = _i"*,i’;.
The distribution of B is ¥, (E.k).

Similar with the case of single outlier, the ratio of

scatler matrix as a consequence of removal of the
observation on the group [ can be formulated as
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A4

= 11
4] "4, +8] .

5

Mardia et al [7] stated that R, has Wilk's Lambda

distribution  with parameter p.m k. and

m:n—(k+l) o R, ~ A{p,m,k}. The Wilk's

Lambda distribution can be approximated by

A(p.mk)-~ lll[u

— pti (12)
u, ~ bem[ﬂ—gi—i .E].
2 2

Il B

R close 1o 1 means that there is no signiticant

T
change due 1o the removal of & observations on the
group f. The estimator is said 1o be insensitive 1o &
outliers when

(13)

The distribution of classical approach is well known
and it is different with the robust approach. The
distribution of robust is not easy to be composed.
Usually we have to do the simulation approach 1o get
the distribution. [n the section will be discussed the
sensitivity and the approximated distribution of robust
approach.

Lat daaset X, =ik, X, ~  of p-

’
variate observations. If observations taken from it a
subset H =X consist of A& data points, then

)?l, )? are random sample of size & and of
o i - +p+1
distribution Nﬂ{y,,;.;, b assumed ash= ['_7___32__}

The location and scale estimator can be computed as,
)_(Ii — LZ /;/, { ”]
his
S*= Z[X’, X\ % -X)
ek
Based on limit central theory, ir
P ) then the distribution of

5% can be approximated by m ¢™'S* - H'(m, Z) 16].
It means that

& c s
R_ S _ yem ey el
A —%[A; XX =Xt )= = s)
and A ~ Y W(m. 3) (16)

439

The ¢ can be approximated by 1. Hardin and Rocke
[5] predicted the values of m by simulation approach
The predictions are listed in the Table L.

TABLEI
THE PREDICTION OF A

Dimension and Size Mared
p=3 n=3l) 12 89
po I n 100 3312
po ) 0o 300 12671
oo 2. n 000 19835
147
Based on the formulas, R.R = I:f‘n approximated by
"y
R~ ——PF a7
m(m-p+1)

The estimator is said to be insensitive to k outliers on

)
the group I when R, > []u .

=l
The section illustrates the sensitivity of classical
and robust measure &k >1 outliers. For illustration. let
the multivariate data having size n=50: p=35. Data

=

contain & = 3 outliers which are far from a bulk of
data. The sensitivities are measured by ratio of scatter
14

matrix R = o L] ratio of classical and robust

approaches is computed by simulation as shown in
Table I1.

TABLEII
Rano R, BY REMOVING £=3 OUTLIERS

Method
Value
Classical Mcthod Robust Method
A 271628 G.040128
A, 0 807614 0039319
R, 0019732 0979824
Cut oft 0.999722 (096963
Scnsm.wl)' = Very sensitive® Insensitive
outliers

The removing outliers causes a serious problem on
the classical estimator. The value of estimator is very
sensitive 1 outliers. It can be seen in the table 2, the
estimator becomes lo be inflated when the outliers
‘present” on the data set.

The reverse of classical sensitivity. the ratio of
MWV robust estimator is almost I, though & = 3
outliers are removed.

V1. REMARK
The MVV robust estimator is not sensitive from
‘presenting” or removing outlier. On the classification
processes. the MVV robusi 2DPCA is an eftective
method. The outcomes of all experiments show the
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MVV 2DPCA is powerful approach o classify the

several objects.
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