UNIVERSITAS INDONESIA

FORMULASI ELEMEN CANGKANG
TRIANGULAR DKMTI18FS

TESIS

Untik diajukan sebagai salah satu syarat memperoleh gelar
Magister Bidang [lmu Teknik Sipil Program Studi Teknik Sipili
]..

Disusun oleh ;
Wati A. Pranoto
349 21121583

PROGRAM PASCASARJANA BIDANG ILMU TEKNIK
PROGRAM STUDI TEKNIK SIPIL
APRIL - 1995



UNIVERSITAS INDONESIA

FORMULASI ELEMEN CANGKANG
TRIANGULAR DKMTI18FS

TESIS

Untuk diajukan sebagai salah satu syarat memperoleh gelar
Magister Bidang IImu Teknik Sipil Program Studi Teknik Sipil

Disusun oleh :

Wati A. Pranoto
349 211 2153

PROGRAM PASCASARJANA BIDANG ILMU TEKNIK
PROGRAM STUDI TEKNIK SIPIL
APRIL - 1995



PERNYATAAN KEASLIAN ISI TESIS

Yang bertandatangan di bawah ini :

Nama : Wati Asriningsih Pranoto
No. Mahasiswa 3492112153

Menyatakan bahwa tesis dengan judul :

FORMULASI ELEMEN CANGKANG
TRIANGULAR DKMTI18FS

Merupakan hasil karya sendiri, bukan merupakan pekerjaan orang lain dan
merupakan salinan atau hasil jiplakan dari tesis atau karya tulis orang lain.

Apabila dikemudian hari ternyata tidak sesuai dengan pernyataan di atas
penulis bersedia menerima segala sanksi yang akan dikenakan.

2

Jakarta, 23 April 1995

V-
7

& P

Wati Asriningsih Pranoto



LEMBAR PENGESAHAN

FORMULASI ELEMEN CANGKANG

TRIANGULAR DKMT18FS
Disusun oleh : Ir. Wati Asriningsih Pranoto
Nomor Induk Mahasiswa : 3492112153 R
Program Studi : Teknik Sipil

Disusun untuk melengkapi persyaratan kurikulum program Magister Bidang
lmu Teknik Pascasarjana Universitas Indonesia guna memperoleh gelar
Magister Teknik.

Tesis ini dapat disetujui untuk diajukan dalam sidang ujian tesis.

Jakarta, 23 April 1995
Menyetujui,

Dosen Pembimbing I Dosen Pembimbing II

Dr. Ir. Irwan Katili Dr./Ir. Heru Purnomo



KATA PENGANTAR

Tesis ini disusun sebagai salah satu syarat untuk memperoleh gelar Magister
Teknik Bidang Ilmu Teknik Sipil Program Pascasarjana Fakultas Teknik Universitas
Indonesia.

Penulis memilih judul ini dengan maksud untuk memformulasikan dan
mengevaluasi elemen cangkang DKMT18FS serta menguji ketangguhan elemen tersebut
sehingga dapat menjadi salah satu elemen alternatif dalam menganalisa struktur cangkang
dengan menggunakan metode elemen hingga. -

Diharapkan tesis ini dapat dipakai sebagai informasi yang bermanfaat untuk
pengembangan elemen-elemen ynag lebih baik lagi dalam menggunakan metode elemen
hingga.

Pada kesempatan ini penulis ingin menyampaikan ucapan terima kasih kepada :

1. Bapak Dr. Ir. Irwan Katili, sebagai pembimbing L

2. Bapak Dr. Ir. Heru Purnomo, sebagai pembimbing II.

3. Bapak Dr. Ir. Fx. Supartono, sebagai Ketua Program Pascasarjanz Bidang Ilmu
Teknik Sipil Universitas Indonesia.

4. Bapak/Ibu Dosen Program Pascasarjana Bidang Ilmu Teknik Sipil, Universitas
Indonesia.

5. Rekan-rekan mahasiswa program Pascasarjana Bidang Ilmu Teknik Sipil Struktur
1993/1994 yang telah banyak membantu secara moril sehingga tesis ini selesai.

6. Kurniawan, ST, yang telah membantu dalam tesis ini.

7. Pimpinan dan staf Fakultas Teknik Universitas Indonesia.

8. Pimpinan dan staf Fakultas Teknik Universitas Tarumanagara, khususnya Jurusan
Sipil FT Untar yang telah memberi kesempatan tugas belajar dan membantu dalam

penyelesaian tesis ini.

il



9. Ir. Sunarjo L. yang telah banyak membantu dalam penyelesaian tesis serta dorongan

moril.

Akhirnya dengan segala kerendahan hati penulis mengucapkan puji syukur
kehadirat Tuhan Yang Maha Esa atas perlindungan dan rahmatNya.

Jakarta, 23 April 1995

Wati A. Pranoto

iii



LEMBAR PENGESAHAN  .ommumumsomvmsnssimn i s
KATA PENGANTAR e
DAFTARISE it o ssesmmmmmmmetes s tesmmssm i s
PIARERARINIITINSE s e e e s
DAFTAR GAMBAR .o
DAFTARTABEL. oot sumsmmmmasnsmenstoamsmrmss s ann e
ABSTRAK e
BAB1 PENDAHULUAN ........................... TR
1.1 Latar Belakang dan Permasalahan.  ......................................

1.2 Tujuan dan Metodologi Penelitian,  _.................ccoooevvviive,

1.3 Peobatasan Masabh oo

1.4 Sistimatika Penulisan ...,
DAl JEOBLTELRT ool mm s s
2l TIUIE iovinnim et s s o i s RO BRSO ESRSS

22 Persamaan Umpm Tiga Ditvierisl:  concanuaumsssnasss s

2.3 Hipotesa dan Teori Pada Pelat.  ...........cooooivviieee o,

2.4 Teori Pelat Reissner-Mindlin, ..o s

2.4.1 Peralihan Virtuil. ...

2.4.2 Deformasi Virtuil. ..o

2.3 PersampanKeseinbangan. .o

2.6 Hubungan Gaya Resultan-Deformasi. ...

24 PrimsipRenn Vil  ccocsiinninsissisneiiiising i

2.8 Energi Potensial Total. ...

2.8.] Bosale UMMBI. it st s iintaat botd

2.8.2 Modifikasi Fungsional Persamaan Energi. ......................

DAFTAR ISI

vii
xii

XV



BAB III
3.1
3.2
3.3
3.4
3.5
3.6
3.7

BAB IV
4.1
4.2
4.3
4.4

BABY

R |
3.2
3.3
5.4
5.5
5.6

BAB VI
6.1
6.2

FORMULASI ELEMEN DKMT ...,
K.  ccossmunmanmnsims s
Aproksimasi Fungsi Geometri. ...,
Aproksimasi Fungsi Peralihan. ...

Vektor Kelengkungan. ...

Asumsi Vektor Deformasi Geser Transversal

Konstrain Diskrit Kirchhoff Mindlin. ...
Matrix Kekakuan Elemen DKMT. ...

FORMULASI ELEMEN ALLMAN
Umum.. e,
Aproksimasi Fungsi Peralihan. ... T
Vektor Deformasi Membran. AR RS L A

Matrix Kekakuan Elemen Allman. ..o

FORMULASI ELEMEN CANGKANG FASET TRIANGULAR
DIMTISES. iiminiinominnmrs sssomsosmsssssmmesmns T r—

Umum. e R A S

Tegangan dan Gaya Dalam Elemen. .............ccccooovovvvrvviienn
Beban Nodal Ekivalen. ..o

UJI GERAKAN BENDA KAKU ..o,
Tujuan Pengujian ...
Pengujian Keabsahan Elemen  ....................
621 UjiRang ..o
6.2.2 Pergerakan Benda Kaku  ..........ooovviiiiiiiiiieee

6.2.2.1 Uji Pada Sebuah Elemen

6.2.2.2 Uji Pada Beberapa Elemen

25
25
26
28
29
30
35
37

40
40
42
44
45

47
47
48
50
52
54
56

58
58
58
58
59
59
61



BAB VII UJI KONVERGENSI ...,
Tk U Konvempensl. s s s
7.2 Bentuk Setengah Bola (Spherical Domes). ................ e,
7.3  Panel Silinder (Cylindrical Shell Roofs). ............c.ccococvvvivinnnn.,
7.4 Pipa Silinder (Circular Cylindrical Shells).  ........cooeevirnn.
7.5 Bentuk Parabol - Hiperbola ( Paraboloid - Hyperboloid Shell )....
7.6. Bentuk Helicoidales atau Twisted Beam. ...
7.7 Bentuk Kantilever Z dengan sudut antara 90°. ...
7.8 Bentuk Kantilever Z dengan sudut antara 45°. ...
7.9 Bentuk Kantilever Kotak ( Box Cantilever ). ...

7.10 Bentuk Silinder Terbuka dengan Beban Momen Lentur
{ Slit Cylinder Beadifif), .o s s smisses

BAB VIII KESIMPULAN DAN SARAN ...,

8.1 Kesimpulan

8.2 Saran

DAFTAR PUSTAKA

vi

66
66
69
73
78
89
93
97
100
103

105

109

109

109

110



DAFTAR NOTASI

~ = tanda vektor (contoh : n)

A = perkalian silang (cross product)
= perkalian titik (dot product)

* = tanda virtuil

= identik dengan

u

= kira-kira sama dengan

€ = anggota dari

c = bagian dari

U = gabungan

Q = domain (daerah dari suatu variabel) “
/ = integral

{} = vektor kolom

[] = matriks (juga di gunakan untuk menyatakan referensi)

<>={}" = matrik baris (transpos dari matrik { })

v = berlaku untuk setiap

& = simbol variasi

b3 = penjumlahan

V = akar dari

[A] = matriks yang menghubungkan lendutan {u,} dengan {o,}
[AT = invers matriks [ A ]

[A]'  =transpos dari matriks [ A ]

[ Bul = matriks deformasi membran pada variabel nodal

[By] = bending strain matriks, yaitu matriks yang menghubungkan {y}

dengan { u, }

[ Bs] = matriks deformasi geser pada variabel nodal.
B, = rotasi gaya dalam normal pada bidang S-Z
Bsi, By = rotasi dalam bidang X-Z pada nodal i dan j
By, By; = rotasi dalam bidang Y-Z pada nodal i dan j
X.X = diferensiasi rotasi virtuil dalam bidang X-Z terhadap .X

vil



Be.x = diferensiasi rotasi virtuil dalam bidang ¥-Z terhadap X

Bs By = rotasi dalam bidang X-Z dan Y-Z

¢ = formulasi dalam metode elemen hingga yang hanya
membutuhkan kontinuitas pada fungsi peralihannya

£ = formulasi dalam metode elemen hingga yang hanya
membutuhkan kontinuitas turunan pertama dari fungsi peralihannya

Ct, = cosinus arah sisi k

dx, dy, dz = panjang diferensial arah sumbu X, ¥, Z

Di = kekakuan membran

Dy = kekakuan bending

D, = kekakuan geser e
dA = luas diferensial .

ABs = variabel inkrimental rotasi dalam bidang z-s pada

nodal k tengah sisi elemen.

= elemen (contoh : A® = luas elemen)

€2 = regangan normal pada arah sumbu z

€x = regangan normal arah sumbu x

Ey = regangan normal arah sumbu y

€ = deformasi yang boleh didefinisikan secara bebas
<e, € €y > = deformasi membran virtuil pada pelat pada bidang x-y
E = modulus Young

€, n = sistem koordinat natural

f, = beban merata arah vertikal

F, = beban vertikal persatuan panjang pada Sg¢

bk = faktor besarnya pengaruh deformasi geser lintang
) = beban merata arah sumbu x

f = beban merata arah sumbu y

£ = beban merata arah sumbu z

£ it = gaya persatuan panjang yang bekerja pada S¢

f, m = gaya persatuan luas pada permukaan tengah

F, = beban vertikal persatuan panjang pada S;

iy = regangan geser pada bidang x-y
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= regangan geser transversal pada bidang x-z
= regangan geser transversal pada bidang y-z

= regangan geser transversal yang dapat didefinisikan secara bebas
= regangan geser independen dalam bidang s-z pada sisi k
= regangan geser independen dalam bidang s-z pada sisi 7
= regangan geser independen dalam bidang s-z pada sisi 5

= regangan geser independen dalam bidang s-z pada sisi 6

regangan geser pada bidang x-y

= modulus geser

= dimensi ketebalan pelat

= matriks elastik membran

= matriks bahan yang menghubungkan antara momen bending
dengan kurvatur (matriks elastik lentur)

= matriks bahan yang menghubungkan antara gaya geser
transversal dengan deformasi geser (matriks elastik geser)

= matriks Jacobian

= determinan matriks Jacobian

matriks Jacobian inverse

Il

koefisien koreksi geser

= kelengkungan virtuil

= kelengkungan yang boleh didefinisikan secara bebas
= kelengkungan virtuil dalam bidang X-Z

= matriks kekakuan struktur global

= matriks kekakuan membran elemen

= matriks kekakuan elemen akibat bending
= matriks kekakuan elemen akibat shear

= dimensi panjang pelat

= dimensi panjang searah sumbu X dan ¥
= diferensiasi momen My terhadap X

= diferensiasi momen M, terhadap ¥

X



M,yx, Myy,y = diferensiasi momen M,y terhadap X dan ¥

M., My = gaya dalam momen bending yang bekerja dalam bidang X-Z dan ¥-Z

M,y = gaya dalam momen torsi

M, = momen bending yang bekerja dalam bidang N-Z (pada gambar 2.8)

Mg = momen bending yang bekerja pada sisi (sisi 4,5,6)

M = momen bending yang bekerja pada arah normal dari sisi (sisi 4,5,6)

Mis = momen torsi yang bekerja dalam bidang S-Z (pada gambar 2.8)

my = momen bending, yang bekerja pada bidang X-Z, persatuan
panjang pada S

my = momen bending, yang bekerja pada bidang ¥-Z, persatuan
panjang pada Sy ¢

Nig, Niiy = diferensiasi fungsi bentuk terhadap kordinat natural & dan n
N; = fungsi bentuk koordinat natural pada titik diskrit

N,..,N3 = fungsi bentuk pada titik diskrit elemen

Nix = diferensiasi fungsi bentuk terhadap koordinat global X dan ¥
I1 = enerji potensial total

I, ITs = enerji potensial regangan bending dan geser

It = enerji potensial beban eksternal

O Gy = tegangan normal arah sumbu X dan Y akibat bending

o8 = tegangan normal arah sumbu Z

R = jari-jari lingkaran

Se = bagian tepi pelat yang dikenai gaya/beban merata persatuan panjang
Sk = sinus arah sisi &

Tn = gaya lintang yang bekerja pada bidang N-Z (pada gambar 2.8)
Ti, Ty = gaya lintang yang bekerja pada bidang Y-Z dan X-Z

i = diferensiasi gaya geser T, terhadap X

Tyy = diferensiasi gaya geser T, terhadap ¥

0; = vektor rotasi dalam arah x

0, = vektor rotasi dalam arah y

0, = vektor rotasi dalam arah z

g = translasi virtuil titik p pada arah sumbu X



u, = variabel nodal untuk sebuah elemen

v = rasio Poisson

v = translasi virtuil titik p pada arah sumbu ¥

o = faktor pemberat pada integrasi Gauss

w = translasi arah vertikal (sumbu Z)

Wq = translasi vertikal virtuil titik ¢

Wi, W = translasi vertikal pada nodal / dan j

w:'x = diferensiasi w terhadap X

W, xx = diferensiasi kedua w’ terhadap X

W,yy = diferensiasi kedua wy virtuil terhadap ¥

W = kerja virtuil pada pelat ) ¢
Wint = kerja dalam virtuil akibat gaya dalam

W ext = kerja luar virtuil akibat beban luar

W = kerja dalam virtuil akibat momen bending

W, = kerja dalam virtuil akibat geser/shear

; = faktor pemberat pada integrasi numerik di titik 7

X = fungsi geometri titik-titik terhadap sumbu X

X5 = absis dari koordinat global titik diskrit 7

X.5, X = diferensiasi fungsi geometri x terhadap koordinat natural £ dan m
y = fungsi geometri titik-titik terhadap sumbu ¥

Vi = ordinat dari koordinat global titik diskrit /

Y,e = diferensiasi fungsi geometri y terhadap koordinat natural £
Yiti = diferensiasi fungsi geometri y terhadap koordinat natural
z = koordinat titik dalam arah sumbu Z

DKMT = Discrete Kirchhoff Mindlin Triangle

DKT = Discrete Kirchhoff Triangle

DST-BL = Discrete Shear Triangle - Batoz Lardeur
DST-BK = Discrete Shear Triangle - Batoz Katili

FS = Facetted Shell
CST = Constant Strain Triangle
GT = Geser Transversal
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ABSTRAK PASCASARJANA BIDANG ILMU TEKNIK
PROGRAM STUDI TEKNIK SIPIL
UNIVERSITAS INDONESIA
TESIS, APRIL 1995

FORMULASI ELEMEN CANGKANG
TRIANGULAR DKMT18FS

xvi + 114 halaman

Dalam tesis ini, akan dibahas tentang formulasi dan evaluasi elemen cangkang
triangular DKMT18FS dengan pendekatan facetted shell (bidang datar).“ Pendekatan
bidang datar digunakan dalam mendiskritisasikan struktur cangkang yakni dengan
mengkombinasikan elemen membran dan elemen pelat, dimana elemen membran yang
digunakan adalah elemen membran ALLMAN dan elemen pelat yang digunakan adalah
elemen pelat DKMT yang dikembangkan oleh Katili pada analisa pelat bending dengan
Metode Elemen Hingga.

Elemen DKMT ini dikembangkan berdasarkan teori pelat Reissner-Mindlin, selain
memperhitungkan efek lentur pada pelat tersebut, juga memperhitungkan deformasi
geser transversal yang terjadi, sehingga apabila setelah dikombinasikan dengan elemen
membran ALLMAN maka akan didapat suatu elemen cangkang yang dapat diterapkan
baik untuk struktur cangkang tipis maupun pada struktur cangkang tebal.

Dari evaluasi yang dilakukan dapat ditarik kesimpulan bahwa elemen ini dapat
digunakan untuk kasus tipis dan tebal, lulus uji Gerakan Benda Kaku untuk gabungan
elemen yang datar, tidak memiliki Spurious Mode, tidak ada Shear Locking dan

Membrane Locking untuk kasus tipis, memenuhi semua kriteria uji konvergensi.

Referensi : 50 (1943 - 1993)



BAB I

PENDAHULUAN

1.1 LATAR BELAKANG DAN PERMASALAHAN

Struktur cangkang (shell) sering dijumpai dilingkungan sekitar kita , misalnya ;
cerobong, kubah, tangki, gedung pencakar langit, karoseri mobil, instalasi nuklir, kapal
laut, rudal, struktur pesawat kedirgantaraan dll. Konsepsi dan analisa struktur tersebut
adalah aktivitas penting dalam perencanaan teknik dan segi ekonomisnya.

Masalah keamanan adalah hal yang tidak bisa diabaikan dalam merealisasikan pusat
instalasi nuklir, struktur kedirgantaraan dan kapal laut. Penentuan "yang akurat dan
optimal terhadap faktor keamanan hanya dapat diperoleh dengan pengetahuan yang
unggul tentang perilaku struktur.

Karena bentuk dan tipe pembebanan yang beragam, metode konvensional tidak lagi
dapat diandalkan untuk mengetahui perilaku struktur tersebut secara akurat. Penemuan
dan pengembangan analisa numerik (numerical analysis) yaitu Finite Element Method
(F.E.M) sejak tiga dasa warsa ini terus berlangsung karena metode ini merupakan
metode yang paling fleksibel bagi pemecahan problema dalam industri di negara-negara
maju. Berbagai persoalan besar, kini dapat diselesaikan dengan FEM. Semua ini menjadi
mungkin karena dukungan fasilitas komputer yang bertumbuh secara sangat revolusioner
dalam kemampuan dan kecepatannya,

Saat ini penelitian dalam rangka menemukan elemen-elemen baru masih terus
berlanjut, baik yang memperhitungkan deformasi geser lintang (berdasarkan teori
Reissner-Mindlin [Ref. M1, R1] ) maupun yang mengabaikannya (berdasarkan teori
Kirchhoff-Love [Ref K1, L1] ). Setiap elemen yang diajukan oleh setiap developer selalu
berusaha untuk menampilkan keunggulannya dibandingkan dengan penaahulunya.
Sedangkan para peneliti dan pemakai ( pihak industri) umumnya lebih menyukai elemen
yang simpel, andal dan memperhitungkan deformasi geser tanpa menimbulkan problema

numerik yaitu Shear Locking dan Spurious Modes.



Sudah banyak elemen cangkang dikembangkan dan dimodelisasi dengan
menggunakan elemen cangkang faset. Elemen cangkang faset sudah biasa digunakan
untuk memodelisasi cangkang dengan melakukan superposisi elemen membran dan
elemen bending. Didalam beberapa literatur dapat ditemukan beberapa formulasi untuk
memodelisasi cangkang [Ref. Z1, bab 3]. Penggunaan elemen cangkang faset untuk
menyelesaikan masalah-masalah cangkang statik dan phenomena phisik lainnya sudah
demikian populer, terutama untuk penyelesaian masalah-masalah praktis dalam industri.

Dalam formulasi elemen cangkang, beberapa hal yang perlu dihindari adalah ;

Pola nodal yang rumit dengan jumlah derajat kebebasan (d.k.) per nodal

bervariasi, sehingga menyulitkan dalam pemberian kondisi batas.

Formulasi 5 d.k. per nodal harus diubah menjadi 6 d k. per nodal bi]aoterdapat

tekukan pada struktur yang hendak dianalisa.

]

Membran locking, khususnya pada titik yang dibebankan di cangkang

hemispherical.

Kekurangan rank pada kekakuan elemen yang dapat menghasilkan spurious

modes.

Elemen cangkang faset triangular dengan 18 derajat kebebasan (d.k.) adalah salah
satu elemen paling simpel dalam analisa cangkang berbentuk sembarang. Elemen tersebut
sangat dibutuhkan baik untuk penelitian maupun untuk aplikasi teknik. Model ini
merupakan penggabungan elemen bending dan elemen membran. Beberapa elemen
bending ada yang baik, dan untuk elemen membran biasanya digunakan elemen CST
(Constant Strain Triangle). Tetapi elemen CST menurunkan hasil keseluruhan elemen
cangkang akibat dari konvergensinya yang sangat rendah.

Konsep dari penggunaan elemen faset plan dalam analisa cangkang diusulkan tahun
1961 oleh Greene et al [G1] dan sudah menjadi ciri utama pada hampir semua finite
elemen codes yang populer, seperti ABAQUS, ADINA, ANSYS, MARK, NASTRAN ,
GT-STRUDL, SAP90 dll.



1.2 TUJUAN DAN METODOLOGI PENELITIAN.

Yang penting dalam memformulasikan suatu elemen cangkang faset, adalah
keseimbangan aproksimasi aksi membran dan bending serta aproksimasi geometri
tercapai dengan baik.

Tujuan dari penelitian ini adalah untuk memformulasi dan mengevaluasi performa
elemen DKMT 18FS (Discrete Kirchhoff Mindlin Triangle 18 d.o.f. Faceted Shell) yang
merupakan gabungan dari 2 elemen dasar : elemen bending dan elemen membran.

Masing-masing nodal mempunyai 6 d.o.f. yaitu 3 translasi dan 3 rotasi (gbr.1).
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Gbrl 1. Elemen cangkang DKMTI8FS

Untuk elemen bending digunakan elemen DKMT [Ref K2] dengan 9 d.o.f. total,
dimana elemen ini diformulasikan berdasarkan pada Teknik Discrete Kirchhoff Mindlin
dan Teori Pelat Mindlin-Reissner dengan memasukkan efek geser transversal (GT).
Telah dibuktikan bahwa elemen ini sangat kokoh dan mempunyai kecepatan konvergensi
yang lebih baik dibanding dengan elemen sejenis yang ada. Elemen ini mempunyai
karakteristik sebagai berikut :

- Lulus Patch Test untuk pelat tipis dan tebal secara memuaskan ;

- Tidak mengandung extra Zero Energy Modes ;



- Tidak terjadi shear locking untuk kasus pelat tipis ;

Relatif tidak sensitif terhadap distorsi geometri ;

Geometrically invariant ;

Karakteristik dari konvergensi mesh sangat baik ;

Kompatibilitas elemen selalu memuaskan, baik untuk kasus pelat tipis maupun
tebal ;

- Waktu komputasi yang efisien.

Sedangkan elemen membran yang dipakai adalah elemen Allman [Ref Al].
Elemen Allman sudah diketahui secara umum lebih unggul dari elemen CST (Constant
Strain Triangle) dalam aplikasi plane stress. Allman telah memformulasikan elemen plane
stress 3 nodal dengan 9 d.o.f. dengan penggabungan d.o.f. rotasi (the_drilling degress of
freedom). Allman menggunakan integrasi penuh, tetapi diamati oleh Carpenter et al [C1]
bahwa integrasi penuh membuat elemen sangat kaku pada hemispherical test. Oleh
karena itu, pola sebuah titik integrasi telah dilakukan. Hasilnya adalah pengurangan rank
elemen. Spurious singular modes muncul hanya dalam keadaan luar biasa, tetapi
kemungkinannya tetap tidak diinginkan. MacNeal dan Harder [M2] dapat mengatasi

masalah spurious modes ini dengan teknik stabilisasi.

Ciri-ciri utama yang menarik dari pemodelan elemen cangkang faset triangular adalah :

Simpel untuk diformulasikan ;

Mudah untuk memasukan data geometrinya ;

Mudah untuk menggabungkannya dengan elemen lain ;

Dapat dengan baik merepresentasikan rigid body motion dengan deformasi nol ;

Waktu komputasi penggunaan elemen yang relatif banyak memberikan

keuntungan dalam hal kecepatannya.

Dari formulasi ini diharapkan akan diperoleh suatu elemen cangkang faset yang
simpel, akurat dan efisien. Evaluasi elemen akan meliputi Uji Gerak Benda Kaku,

Spurious Modes dan Uji Benchmark.



1.3 PEMBATASAN MASALAH.

Penelitian ini dibatasi dengan :
1. Hanya untuk elemen cangkang DKMTI8FS yang merupakan gabungan elemen
DKMT dan elemen Allman.

2. Dengan material homogen, isotropik, linier, elastik dan tipe pembebanan statik.

1.4 SISTIMATIKA PENULISAN.

Penulisan ini akan dimulai dari pembahasan teori pelat yang meliputi efek membran
dan bending. Teori ini lebih dikenal dengan nama teori pelat Reissner-Mindlin Hal-hal
mengenai hipotesa dan penjabaran perumusan diberikan secara mendetail pada Bab II.

Kemudian pada Bab III akan dibahas formulasi elemen bending -tn'angular DKMT.
Penggunaan modifikasi fungsional Hu-Washizu dan teknik Discrete Kirchhoff Mindlin
dijelaskan dalam upaya mendapat elemen bending yang andal dan bebas dari problem
numerik.

Setelah itu pada Bab IV akan dibahas formulasi elemen membran triangular
Allman, yaitu elemen membran dengan rotasi drilling. Dijelaskan pula penggunaan satu
titik integrasi Hammer agar diperoleh elemen yang sederhana dan efisien. Masalah
spurious modes yang muncul kemudian diatasi dengan cara yang sederhana.

Pada Bab V dijelaskan cara penggabungan 2 elemen tersebut, agar diperoleh matrix
kekakuan global dengan cara transformasi. Proses perhitungan gaya dalam dan tegangan
pada level elementer diuraikan dengan sangat jelas.

Pada Bab VI, elemen DKMTI18FS akan diuji terhadap gerakan benda kaku.

Pada Bab VII elemen DKMTI8FS akan diuji dengan Uji Benchmark, yang
sekaligus merupakan contoh perhitungan.

Pada Bab terakhir yaitu Bab VIII, merupakan kesimpulan dan beberapa saran

disampaikan dalam penggunaan elemen DKMT 18FS ini.



BAB II
TEORI PELAT

2.1 UMUM

Pelat adalah suatu struktur solid 3 dimensi yang didefinisikan oleh bidang
tengahnya, dengan ketebalan h (arah-z), yang lebih kecil dibandingkan dimensi lainnya,

panjang dan lebar pelat (dalam arah-x dan arah-y).

a ZwW

Gbr. 2.1 Deskripsi geometri pelat

Dari pernyataan di atas, maka dapat dikatakan bahwa pelat sebagai struktur solid
3 dimensi (3D) dapat dideskripsikan dalam bentuk 2 dimensi, dengan demikian rumusan
analisa struktur solid 3D dapat diterapkan pada struktur pelat, namun diperlukan
beberapa asumsi dalam rumusannya. Dengan demikian, beberapa hipotesa diterapkan

dalam perumusan teori pelat.

2.2 PERSAMAAN UMUM TIGA DIMENSI
Struktur solid 3 dimensi dengan bahan yang elastis-linier dan isotropis-homogen
memiliki tegangan-tegangan dalam, seperti digambarkan pada elemen dari suatu struktur

solid 3 dimensi di bawah ini (gambar 2.2) :
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Gbr. 2.2 Tegangan positip pada elemen struktur solid 3D

Dalam hal ini, elemen diferensial di atas berukuran (dx)(dy)(dz) mempunyai 6
komponen vektor tegangan yang independen, dimana terdapat tiga tegangan normal (o ,
Oy , O; ), dan tiga tegangan geser (Cy , Ox , Oy, ),. Sedangkan untuk tegangan geser
dikarenakan prinsip keseimbangan, maka kondisi dibawah ini harus dipenuhi :

2.1)

Berdasarkan hukum Hooke, hubungan antara tegangan dan regangan untuk

Oxy = Oyx , Oxx = O dan Gy, = 0y

material elastis-linier dan isotrop-homogen dapat dinyatakan oleh persamaan berikut ini :

fex [ IJE —u/E -WyE 0 0 0| rc_,‘]
3 YE YE —yE 0 0 0 | |o |
g, -YE -yE JE 0 0 0 |[]o,]|
Yol | 0 0o 0o Y o o S f (&2)
Y o o o o0 Y 0| ls,l
[sz o o o o o YG||o,

dimana : E adalah modulus Young, v adalah rasio Poisson dan.

G adalah modulus geser : G =

E
2 (1+v)

Dari persamaan 2.2, tampak bahwa benda solid 3 dimensi mengalami deformasi

regangan ke 3 arah (dalam sistem koordinat Kartesian :

deformasi normal (&« , €y, €; ), dan tiga deformasi geser iy s Vozis Vo )

Oxy, Oxz dan oy, seringkali dinyatakan dalam 1y, 1y, dan 1y,.

7

arah x, y dan z), yaitu tiga



2.3 HIPOTESA DAN TEORI PADA PELAT

Beberapa hipotesa, sebagai asumsi-asumsi dasar dalam dasar perumusan teori
pelat adalah :
1. Domain Q dinyatakan dalam bentuk :
Q={(xyz) eR| ze [W2 h2] (xy)e ACR?)
h = tebal pelat
A = luas bidang tengah pelat
2.0,=0
3. W= (xy,2) =W} (xY)
q = titik pada sembarang penampang pelat.
p = titik pada bidang tengah pelat. }

Penjelasan singkat untuk ketiga hipotesa di atas adalah sebagai berikut :
1. Pada asumsi ke-1, ketebalan pelat (h) dapat dinyatakan dalam fungsi x dan y.
2. Asumsi ke-2 merupakan hipotesa plane stress, tegangan normal o, diabaikan.
3. Asumsi ke-3 menyatakan bahwa tidak terjadi perubahan ketebalan pelat.

Di samping ketiga asumsi dasar di atas, ada asumsi lain yang berkenaan dengan
masalah ketebalan pelat, khususnya dalam analisa peranan deformasi geser transversal
(GT) pada pelat. Ukuran ketebalan struktur pelat tidak hanya menentukan klasifikasi
geometrisnya saja, namun juga terhadap klasifikasi analisa struktur, yaitu dalam hal
peranan pengaruh GT (Geser Transversal). Ada 2 macam teori yang menjadi dasar
dalam klasifikasi analisa struktur pelat, yaitu :

1. Teori pelat Kirchhoff-Love berlaku pada pelat tipis (L/h > 20), dimana deformasi GT
dapat diabaikan.

2. Teori pelat Reissner-Mindlin berlaku pada pelat tebal (4 < L/h < 20 ), di mana
deformasi GT perlu diperhitungkan.

L adalah dimensi pelat pada bidang x-y sedangkan h adalah tebal pelat (gambar 2.1).

2.4 TEORI PELAT REISSNER-MINDLIN
Pada teori Reissner-Mindlin peranan pengaruh deformasi GT diperhitungkan,
disamping itu hanya diperlukan kontinuitas C°, artinya hanya dibutuhkan kontinuitas

peralihan di antara elemen-elemen yang berbatasan sedangkan diferensiasi primernya



tidak diharuskan kontinu, dengan demikian aproksimasi persamaan peralihan (dalam hal

ini peralihan vertikal w serta rotasi By dan B,) dapat diekspresikan secara independen.

2.4.1 Peralihan Virtuil

Gbr. 2.3 Rotasi pelat

Gambar 2.3 memperlihatkan pelat yang belum dibebani. Bidang tengah pelat
sebagai bidang x-y. Komponen peralihan arah x, y dan z dilambangkan dalam u, v dan w.
Fungsi peralihan komponen u dan v merupakan fungsi linier dalam arah z dikalikan
dengan rotasi antara bidang tengahnya terhadap bidang x-z dan y-z, yang dinotasikan
dalam By dan B, Pada elemen-elemen yang peralihan virtuilnya memperhitungkan
deformasi geser, persamaan peralihannya untuk sembarang titik dalam suatu irisan
penampang pelat didefinisikan berdasarkan hipotesa dari teori pelat Reissner-Mindlin.
Adapun hipotesa dari teori pelat Reissner-Mindlin menyatakan bahwa :

“ Titik-titik material, yang sebelum deformasi terletak pada garis lurus terhadap
permukaan tengah, setelah deformasi akan tetap berada pada garis lurus, tetapi_tidak

harus tetap tegak lurus pada permukaan tengah”.

Kinematika pelat berdasarkan teori Reissner-Mindlin tersebut, dapat dilihat pada

gambar 2.4 dan 2.5 berikut ini.
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Gbr. 2.4 Peralihan virtuil pelat dengan deformasi geser
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Gbr.2.5 Gerakan virtuil titik p dan g
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Hipotesa penampang lurus ini mengekspresikan peralihan virtuil sembarang titik q

(ug dan ve) yang berjarak z terhadap bidang tengah (x-y) sebagai fungsi peralihan

virtuil titik p (up' dan vp') yang terletak pada permukaan/ bidang tengah (referensi) dan

sebagai fungsi variasi peralihan virtuil (z B’) akibat rotasi segmen (z menyatakan jarak

vertikal titik q terhadap titik p). Hubungan ini dapat dinyatakan oleh :

ug (x,y,2) = U (x,y) + 2 By (x,) (2.3a)

Ve (%Y,2) = vy (x,y) + 2 By (x,y) (2.3b)

Hipotesa lain yang mendasari teori pelat Reissner-Mindlin adalah hipotesa

konservasi ketebalan, yang menyatakan : “semua titik yang terletak pada garis yang

tegak lurus dengan bidang tengah, satu sama lain berjarak sama setelah

berdeformasi”. Dengan demikian, peralihan w, independen terhadap variabel z dan
hanya merupakan fungsi x dan y seperti yang terlihat dalam persamaan diba}vah ini.

Wy =W (X,y) (2.3¢)

Dengan demikian persamaan lendutan virtuil yang didasarkan dari hipotesa pada teori

pelat Reissner-Mindlin adalah :

sl 4o
Vg (53,21 = Yvpr + 2By (x,y) (2.4)
wy'(x,y,2) 0 w'(x,y)

* *
Bs« , By dinamakan rotasi virtuil dari vektor pq.

Jadi lendutan u dan v (arah x dan y), dari suatu titik sembarang pada penampang
pelat, bervariasi linier terhadap z dan lendutan transversal w (arah z) hanya merupakan

fungsi x dan y.

2.4.2 Deformasi Virtuil

Deformasi membran virtuil dan bending virtuil berdasarkan teori Reissner-

Mindlin dinyatakan sebagai berikut ;

I N S I R R W 1
J:y 1J av:‘/ay L: ! :zy L - zJ By.y (2.5)
lT;yJ [6u{/6y+6vq'/axJ [up’; " Vp’;J [B;,y +B;,x

)= {e) + 2 fx’] (2.6)
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(e )= <e; e, e:y) 2.7)

(x )=(x§ Xy x’;y> (2.8)
di mana :
() : deformasi virtuil pada pelat pada bidang x-y akibat efek membran dan
bending.
<e‘> . deformasi membran virtuil pada pelat pada bidang x-y.

z (x*) :deformasi bending virtuil pada bidang x-y-z.

(x* ) :kelengkungan virtuil pada bidang x-y akibat efek bending.

dimana :
. ) .
q J[ o) 0,
Deformasi membran adalah ; 1 e; = v,; L ) (2.9)
o) Loy +
X:.; 1 Bx,x ]L
Dan kelengkungan adalah ; 1 x; = B;'y (2.10)
* ® *
\xny By + By,xJ

Deformasi GT virtuil yang terjadi pada bidang x-z dan y-z dinyatakan sebagai

berikut :
* Y;z, W,x * u,z w,x * Bx
{Y} = * — Wg + * = w* " B* (2]1)
'Y)‘Z ¥ V,Z Y Y

Dari persamaan 2.11, tampak bahwa deformasi geser yang terjadi sepanjang
penampang pelat (arah z) adalah konstan.

Hipotesa pada teori pelat Kirchhoff-Love menyatakan bahwa :
“ Titik-tittk material, yang sebelum deformasi terletak pada garis lurus dan tegak lurus
terhadap permukaan tengah, setelah deformasi akan tetap berada pada garis lurus dan

harus tetap tegak lurus pada permukaan tengah “.

Berdasarkan hipotesa tersebut, maka kinematika pelat dapat digambarkan seperti

pada halaman berikut (gambar 2.6 dan 2.7).

12
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Gbr. 2.6 Peralihan virtuil pelat tanpa deformasi geser pada bidang x-z

pemmkaan tengah

Gb. 2.7 Peralihan virtuil pelat tanpa memperhitungkan

pengaruh deformasi geser

Pada teori Kirchhoff-Love ini, persamaan deformasi gesernya adalah nol -

Ve =Wxt Bc=0 dany,=w,+B, =0 (2.12a)

dengan demikian :

Bx =-w,dan By =-w, (2.12b)
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Jadi peranan pengaruh deformasi GT diabaikan. Hal ini sesuai, apabilg diterapkan
dalam pelat tipis, namun pada pelat tebal seringkali peranan pengaruh geser tidak dapat
diabaikan sama sekali.

Selanjutnya, kelengkungan virtuilnya dapat dinyatakan oleh :
[ '
s
Ay 0= 1 =Wy (2.13)

Dari persamaan (2.13) dapat kita lihat bahwa formulasi elemen hingga membutuhkan
aproksimasi C' untuk peralihan transversal w, sedangkan fungsi rotasi Bx dan B, tidak
perlu diaproksimasi karena rotasi adalah merupakan turunan pertama dari transversal w.

Aproksimasi C’ untuk persamaan (2.9), (2.10) dan (2.11).

2.5 PERSAMAAN KESEIMBANGAN.
Persamaan keseimbangan pada pelat dalam suatu elemen (dx)(dy) pada kondisi
statik dan elastis-linier dengan beban merata pada permukaan ( f, ) adalah mirip dengan

persamaan pada struktur solid 3D, yaitu :

Nx_,x =+ Nx}r’y + fx = 0
Ny + Nyy +£,=0

Tax + Tyy + £, = 0
Mx,x + Mxy,y = Tx =
My, + Mgy - Ty =

o O

(2.14)

di mana Ny, N, dan N, adalah gaya membran, sedangkan T, , T, , My , M, dan M,

adalah gaya geser transversal dan momen bending per satuan panjang.
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a) Resultan tegangan pada elemen
diferensial suatu pelat homogen

MH
Mm’
T n
M,
M,
M,y
LTy

=

kol

ds
Mﬂ Mm
oT, Ny
1 ny .
ds 3
» X
ny ds

b) Resultan tegangan pada dife-
rensial tepi pelat (ds) homogen

= resultan tegangan o,
= resultan tegangan o,
= resultan tegangan o,

=momen bending yang bekerja dalam bidang X-Z
=momen bending yang bekerja dalam bidangY-Z
=momen lorsi

= gaya geser transversal yang bekerja pada

bidang Y-Z dan X-Z

Gbr. 2.8 Resultan tegangan pada elemen diferensial pelat
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Gbr. 2.9 Arah momen positip
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b) Tegangan pada diferensial tepi pelat (ds) suatu pelat homogen

Gbr. 2.10 Tegangan yang bekerja pada elemen pelat homogen
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Kondisi batas untuk diferensial pelat pada gambar 2.8 adalah :
u=u;v=v;w=w;B, =B ;B =B, padaC,
Untuk semua titik pada kontur S¢, di mana S, US; = S = 0A, besarnya gaya-gaya Ny,
Ny, Ta, My dan My, adalah :
Nuw = Ny.ng +Ngy.ny
Ny = Nyy.ne +Ny.n,
Ty = Tx.ne +Ty. ny=F,
Maw = My.ng + My . ny=m,
My, = My.ne +M,.n,=m, (2.15)
di mana,
St adalah sisi tepi pelat dimana bekerja gaya
S. adalah sisi tepi pelat dimana kondisi batasnya diketahui

ny dan ny adalah cosinus arah daripada normal (pada Sy) yang mengarah keluar.

Pada S¢ besarnya harga T, , My, dan M,, menyatakan besarnya gaya-gaya yang
diberikan, yaitu F, (beban terpusat), m, dan m, . Pada kondisi batas S, , besarnya harga
Ta, My, dan My, menyatakan gaya-gaya reaksi perletakan pelat.

Dengan melihat gambar 2.8 dan 2.10, terlihat bahwa gaya-gaya yang ada
merupakan resultan daripada tegangan o, Oy ,0y, T« dan T, Gaya resultan di atas

diddpat dari persamaan berikut ini di mana dinyatakan hubungan antara tegangan dan

gaya yang terjadi :
Ny l +h/2 chl
N} = N, 1 = l} oy ( dz (2.16)
-h/2
nyJ (Oxy
My w2 | Ox
M} = M, 1= | q0,2dz o @1
-h/2
Mxy Oxy
T +h/2 | T
(T) ={"}= !{"Z}d 2.18
Ty -h/2 Tyz = ( )

Di mana o, o, dan o, adalah tegangan normal dan geser pada permukaan x-y yang

bervariasi linier terhadap z. Sedangkan T, dan T, bervariasi kuadratik terhadap z.
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2.6 HUBUNGAN GAYA RESULTAN - DEFORMASI

Dalam hal pelat lentur sebagai suatu struktur plane stress maka digunakan
hipotesa yang menyatakan bahwa tegangan o ,= 0 sehingga dimungkinkan untuk
merumuskan suatu hubungan antara tegangan dan regangan (tanpa tegangan awal) yang

elastis-linier (hukum Hooke) dalam bentuk sebagai berikut :

(o} = [Hu]{g} dan {1} = [HT]{I} (2.19)
(8] ] [8. ]
Jc: L:[Hc] J;; L (2.20)
lcny [I‘\'}‘J
T R

di mana ,
{§} dan { I} adalah deformasi independen pada permukaan xy, xz dan yz, tanda garis

di bawahnya melambangkan ketidakbergantungan (independen) variabel yang
bersangkutan, maksudnya kita dapat mendefinisikannya secara sama ataupun berbeda
dengan rumusan persamaan deformasi regangan virtuil yang telah dinyatakan sebelumnya

(persamaan (2.5) - (2.11)).

Untuk material isotrop dan homogen, matriks [HU} dan[Ht] pada pelat lentur

adalah :
[ 1
g [Tv o0
[H] = Al 1 l?u‘ (2.22)
% =]
o] E '
[HT] = GLO IJ’ dimana G = 2(1+0) (2.23)

Dengan memperhatikan rumusan persamaan yang menunjukkan hubungan antara

tegangan dan gaya, maka diperoleh persamaan berikut :

(N} =[H,,] {¢} (2.24)
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(M} = [H,] {x} (225)

(T} =[H,] {7} (2.26)

tanda garis dibawah e, ¥ dan y menyatakan bahwa kita boleh menyatakannya secara
independen, artinya didefinisikan sama atau berbeda dengan persamaan sebelumnya
(pers.2.9-11). Dalam batasan teori linier, deformasi membran, kelengkungan dan

deformasi geser transversal dapat dinyatakan dalam :

{e}—{e=0; ()= < > Vy uy+v,x)> (2.27a)
(W-f=0: (W=(x, « ) Bux By (Buy +Byx))  2270)

(v} -{rf=0; (Y>=<Yu vyz>:<(w,x+ﬁx] (w.y+By]> . 2270

[Nﬂ ey 1 v O
Eh
N, r=[H,le, t ; [Hup]=Dmjv 1 0 ;Dm=—(1 5 (2.28)
—-u
N 1-v
xy =xy 0 0 —
L 2 =
[ ]
M, Ly 1 v 0 3
M, r=[H,] [H]ﬁD 6 1 0 |5 DL e—b — G20
y o1 X, * 1] = Db ol a=vy
-V
M, X, 00 —

T, 1 1 o] i
T =[1] y ’ [Hs]=DS LO IJ; D . =kGh (2.30)

y Lye
dimana :
D, = kekakuan membran
= kekakuan bending
D, = kekakuan geser

E
G = modulus geser =
2(1+v)
k = koefisien koreksi geser ; h  =tebal pelat
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Munculnya faktor k, sebagai faktor koreksi geser, adalah untuk mendapatkan
tegangan geser yang sebenarnya pada sepanjang ketebalan pelat, hal ini sebagai antisipasi
dari akibat asumsi pada teori pelat yang mendefinisikan pelat sebagai struktur 2 dimensi
dengan bidang tengahnya sebagai bidang referensi (beban dianggap bekerja langsung
pada bidang tengah). Sehingga akan diperoleh suatu kondisi di mana tegangan geser

pada permukaan superior dan inferior adalah nol (T o= T,, = 0) dan maksimum di

yz
tengah penampang dengan demikian tegangan GT bervariasi secara quadratik dalam arah
z. Sedangkan dalam teori Reissner-Mindlin <y, v,,> dinyatakan konstan dalam arah z.
Bila kita perhatikan persamaan (2.21), maka akan kita sadari ketidaktepatan relasi
tersebut. Karena didalam MEH kita menggunakan prinsip Energi/ Kerja Virtuil maka
ketidaktepatan tersebut perlu dikoreksi oleh suatu koefisien koreksi GT k. Dalam kasus

pelat isotrop-homogen, umumnya digunakan koefisien koreksi geser-Reissner, k = 5/6

untuk kasus statik atau koefisien koreksi geser Mindlin, k = 7? /12 untuk kasus dinamik.

2.7 PRINSIP KERJA VIRTUIL

Prinsip kerja virtuil menyatakan suatu kondisi, di mana bila pada suatu struktur
dalam keadaan seimbang dikerjakan padanya suatu peralihan virtuil yang kecil, maka
kerja virtuil dari beban luar tadi sama dengan energi regangan virtuil dari tegangan
dalamnya.

Prinsip kerja virtuil (PKV) Prinsip Minimum Energi Potensial Total (PMEPT),
mempunyai peranan yang sangat penting dalam MEH. Penjabaran energi potensial
berikut dilakukan berkenaan dengan perumusan persoalan pelat.

Prinsip kerja virtuil yang diperoleh dari formulasi integral (variasionel) bentuk

lemah (weak form) daripada suatu persamaan keseimbangan pelat adalah

szh]t_wext=0 : V{u },{V },{W }s{B }
) o ) %Z.Pi(l)
Wi dan W, adalah kerja virtuil dalam dan luar, di mana persamaan untu
kerja dalamnya adalah :
b "
Wine = Wit + Wy + Wi

dimana : (2.32a)

21



m ’{(e) (N} dA ; W}, = {(x*) {M} dA ; W5, = {(V‘) {THA 5 30p)

dan untuk kerja luarnya adalah :

W[5 10 + (8 ) an () () + () (]

S (2.32¢)

dengan,
f,, my = gaya persatuan panjang yang bekerja pada S¢ (S¢ < S).
f, m = gaya persatuan luas pada permukaan tengah (bidang X-Y).

Pada model peralihan klasik pelat, gaya-gaya {N}, { M} dan { T} dihubungkan

secara eksplisit dengan deformasi membran {e}, kelengkungan {X} dan deformasi GT

ty}.

2.8 ENERGI POTENSIAL TOTAL
2.8.1 Bentuk Umum

Pada prinsip energi potensial total, akan kita peroleh keadaan setimbang suatu
struktur apabila energi potensial totalnya adalah minimum atau disebut juga dalam
kondisi stasioner.

Dengan melihat persamaan variasionel dari prinsip kerja virtuil di atas maka
kondisi stasioner daripada energi potensial total IT (teorema Castigliano) dinyatakan
dalam :

§(I)=w=0; Vdu=u";8v= v ;dw=w ; 8B, = B, ; 5B, = B, (2.33)
dengan meminimumkan harga energi potensial total, kita akan dapat memperoleh matriks
kekakuan elemen, masalah ini akan dibahas pada bab berikutnya.

Selanjutnya, energi potensial total dari elemen pelat bending dengan deformasi

geser adalah ;

[T=I1_ +IT_, (2.34)

Di mana untuk energi dalamnya terdiri dari :

Iy =T, + Hﬁu“’nfm (2.35)
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m _
mt —

o) (N} dA ;D =%IA(x){M] dA ;I :%i('y) (T}dA  (2.36)

B |

dengan memasukkan persamaan 2.28-30 ke dalam 2.36 maka energi dalamnya menjadi :

n= 5 (e [Ha] {e) aa (2.372)
e, = %j{(x) (1, ] {x) da (2.37b)
I, =3 1) [1,] {1} ¢a (2.370)

Sedangkan untuk energi luarnya, dinyatakan dalam :

Mo = () 46) + (B) (m)) da+ () £} + (B) {my))ds  238)

di mana,

[1 adalah energi potensial total

[1§ adalah energi dalam daripada deformasi membran

I

.. adalah energi dalam daripada deformasi geser

H;’“ adalah energi dalam daripada deformasi bending

IT,,, adalah energi potensial luar akibat beban permukaan dan beban tepi
F,, my, my adalah gaya persatuan panjang (bekerja pada S)

f,  adalah gaya persatuan luas pada permukaan tengah.

S. adalah bagian tepi luar pelat

¢
Pada elemen DKMT, dilakukan modifikasi terhadap energi dalam daripada

deformasi geser. Seperti yang akan dijelaskan pada sub bab berikut ini.

2.8.2 Modifikasi Fungsional Persamaan Energi

Pada formulasi elemen DKMT ini, dideskripsikan persoalan pelat dengan
memperhitungkan deformasi geser yang didasarkan pada teori pelat Reissner-Mindlin di
mana dalam perumusan energi potensialnya digunakan teknik modifikasi fungsional Hu-

Washizu.
Adapun bentuk fungsionil daripada modifikasi Hu-Washizu, yang dikenakan pada

persamaan energi potensial internal adalah :
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1

mh = —Ie) [H,] {e} dA (2.39)
24

m, = 2 1) (] () 0 (2.40)
A

0, = 510 [i] fr)ea + 1 S

I= }\(T){ (-} ) da (2.422)

Pada bentuk fungsionil di atas, harga variabel yang independen adalah u, v, w,

Be.By,v. v, dan T T, Aproksimasi variabel-variabel independen harus

dikondisikan sedemikian rupa supaya diperoleh harga deformasi geser yang konstan atau
nol secara benar, sehingga diperoleh elemen yang bebas dari problem spurious mode

&

maupun shear locking (blokade geser).
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BAB III
FORMULASI ELEMEN DKMT

3.1 UMUM

Elemen DKMT (Discrete Kirchhoff Mindlin Triangular) terdiri dari 3 nodal
sudut dengan 3 derajat kebebasan per nodal, yaitu :

1. w, translasi arah Z

2. Bx, putaran sudut pada bidang x-z

3. By, putaran sudut pada bidang y-z

Z,w
Bx | Py
Y 3 Wy
Bx3
X Wi | E
Bxl
B)’]
W,
Bxg
BY2

Gbr. 3.1 Elemen pelat bending DKMT (Discrete Kirchhoff Mindlin Triangular)

Bentuk geometri pelat diwakili oleh sejumlah elemen triangular dengan masing-
masing elemen menggunakan pendekatan linier terhadap nilai koordinat ﬁodal sudut.
Sedangkan fungsi peralihannya diaproksimasi dengan pendekatan linier pada variabel
nodal sudut dan kuadratik pada variabel nodal (inkrimental rotasi tangensial) sisi tengah
elemen. Selanjutnya persamaan energi elemen ini diformulasikan dengan menggunakan
teknik Discrete Kirchhoff Mindlin dan fungsional modifikasi dari Hu-Washizu. Dengan

teknik formulasi ini, masalah spurious mode dan shear locking berhasil diatasi.
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Pada bab ini akan dijelaskan mengenai langkah-langkah penurunan rumus untuk
mendapatkan formulasi elemen DKMT, khususnya dalam perolehan matriks

kekakuannya.

3.2 APROKSIMASI FUNGSI GEOMETRI

Untuk elemen DKMT aproksimasi fungsi geometri dinyatakan dengan fungsi

G-l
= X N; (3.1
h 4 i=] Yi

linier, di mana :

3 QOD

2

(0,0) (1L,O)

_ lipmte] @ Skl . pogsp
s =0, g x  [Qd=[t n] [ o 'Ck] . A,
[——p.x

Ck = Cos Bk = Xji / Lk : Sk = Sin ek = Vi / Ly : (le:)2 = (xji)2 + (yji)2

Xji = Xj =Xi Xji = Xj =X
Gbr 3.2 Elemen dalam sistem koordinat kartesian (x-y),

koordinat normal tangensial (n-s) dan koordinat natural (&-1)

N; = fungsi bentuk dalam sistim koordinat natural pada nodal-i (i=1,2,3.), lihat
tabel I
X,y = koordinat titik sembarang yang ditinjau pada elemen.

Xi,yi = koordinat global dari nodal-i

€i,Mi = koordinat natural dari titik nodal yang ditinjau
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Persamaan 3.1 memperlihatkan hubungan antara koordinat global dengan
koordinat natural elemen. Selanjutnya, hubungan antara turunan pertama fungsi
transformasi koordinat global dengan turunan pertama dari fungsi transformasi

koordinat natural adalah :

N _DOxoN O @EN

_ 32
&~ OF ax o ay )
ON oxoN oy oN
— 3.2b
n  anox on oy e
atau :
N N,
{N‘E’}ﬂﬂ {NT"‘} (33)
LT LYy
dengan :

[J]:[x'é Y*é-| _ %21 yai

X Y’nJ X3 YBIJ; AR Ga
Matrik [J] disebut matrik Jacobian. Determinan dari matrik Jacobian ini adalah :
[71=%g Y= X Y2 = 2A = %313 = %31 Y2y 3.5)

di mana A = luas elemen segitiga.

Persamaan (3.3) dapat pula dinyatakan sebagai berikut :
N. N.
I,X ; ig
ot 0
l’y lﬁTI

[11=1J ].l = invers matrik Jacobian.

dengan :

atau ;

(3.7
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3.3 APROKSIMASI FUNGSI PERALIHAN

Fungsi peralihan untuk setiap elemen dapat diaproksimasi dengan cara

menginterpolasi variabel nodalnya.  Fungsi aproksimasi peralihan untuk elemen DKMT

dinyatakan oleh :

W= Z Ni Wi (383)
i=l
3 6
Bx - Z Nini + X PkaABsk (3.8b)
i=1 k=4
3 6
By = E{ NiB,; + kip" Sk AB, (3.8¢)

Gbr.3.3 Data kinematis variabel nodal sudut dan variabel nodal sisi tengah elemen.

di mana :
w = fungsi peralihan untuk translasi vertikal (arah sumbu z).

Bx, By = fungsi peralihan untuk rotasi dalam bidang z-x dan z-y.

N; = fungsi bentuk linier untuk nodal sudut (nodal 1,2,3).
Py = fungsi bentuk kuadratik untuk nodal tengah (nodal 4,5,6).
Wi = variabel peralihan translasi vertikal (arah sumbu z) pada nodal i (i = 1,2,3),

lihat gambar 3.3.

Bxi , Byi = variabel rotasi dalam bidang z-x dan z-y pada nodal sudut i (i = 1,2,3), lihat

gambar 3.3,
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ABs, = variabel inkrimental rotasi dalam bidang z-s pada nodal k (k = 4,5,6) tengah

sisi elemen (nodal 4,5,6). Variabel nodal ini pada akhirnya akan dieliminasi
dengan teknik diskrit Kirchhoff Mindlin.

Cx, Sx = arah cosinus dan sinus dari sisi-k

Ni merupakan fungsi polinomial lengkap sehubungan dengan rigid-constant modes (rc-
modes) dan Py adalah fungsi orde tinggi (h-modes). N; dan Py diberikan pada tabel L.

Table I : fungsi bentuk

Ni=A Py =4AE
N2=8& | Ps=4E0
N3=n |Ps=4An

k=1 ~n

3.4 VEKTOR KELENGKUNGAN
Dengan memperhatikan persamaan 2.27b dan 3.8, yang menunjukkan hubungan
antara kelengkungan dan peralihan, maka vektor kelengkungan dapat dinyatakan dalam

bentuk :

(x) = [Bbﬁ]{Un} + [Bbéﬁ}{AB”} (3.9)

Persamaan 3.9 di atas, memperlihatkan hubungan antara vektor kelengkungan
dengan peralihan nodal, dan matrik penghubungnya adalah matrik regangan bending.
Selanjutnya, masing-masing matrik tersebut diekspresikan dalam bentuk seperti di bawah
ini.

Bentuk matrik kelengkungan-peralihan [Bys] adalah sebagai berikut :

R }
[Bog] =]~ 0 0 Ny, .. i=123] (3.10)
0 Ni,y Ni,x J .
di mana dari penjabaran persamaan 3.10 | diperoleh :
Ni,x = .] Ni. + .] NI.
iy (3.11)
N..y = Ja N.,g *t )n Ni.n

Dengan memasukan nilai-nilai term jacobian invers (pers.3.7) akhirnya diperoleh
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{-0 ¥ 0 0 -y3 0 0 -y; O ]

0 X33 -¥;2 0 X3 -y3 0 x5 -yy
Sedangkan bentuk matrik kelengkungan-peralihan inkrimental bending [Bupap] adalah

sebagai berikut :

Fﬁ Pk,:\'Ck _Il
[BbAE.] il Py ySk o =430 | (3.13)
Pk‘ka =+ Pk,XSk J

di mana dengan cara yang sama dalam perolehan persamaan 3.10, maka :

pk,x = 3 PL—.,§ + Jiz Pk,n

) . (3.14)
Pk,y = Ja Pk.g T Ja Pk.n
Dan menggantikan term jacobian invers dari persamaan 3.7, akan diperoleh 3
Py e 13 + Pxqy21) Gk
[Bbaﬁ] = ﬁ; (Pyz X13 + Py 5 X21) Sk k=456
(Pye X13 + Py x21) Ci - Py g y13 + Py y21) Sk (3.15)

sedangkan vektor peralihan nodalnya adalah :

(Un>: (Wl Bxi Byt wa By By wi Bys By3> (3.16)
dan vektor peralihan rotasi inkrimentalnya adalah

(8By) = (ABu ABss ABss) (3.17)

3.5 ASUMSI VEKTOR GESER TRANSVERSAL (GT).

Untuk tiap sisi elemen, di nodal-nodal sudutnya dibuatkan suatu sistem koordinat
lokal dengan sumbu koordinat n-s (gambar 3.2), di mana sumbu-s adalah sumbu yang
terletak dan searah dengan sisi elemen, sedangkan sumbu-n adalah sumbu normal yang
tegak lurus sisi-k elemen yang bersangkutan. Selanjutnya dikembangkan persamaan dasar
dari deformasi geser transversal (GT), di mana deformasi geser sepanjang sisi-k (gambar

3.4) didefinisikan sebagai deformasi GT independen dan dapat dinyatakan sebagai :
Ysz = [~
D (3.18)
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di mana ;
D, =k.Gh
¥z = deformasi GT yang didefinisikan secara independen

T, = gaya GT tangensial sepanjang sisi-k

Gbr.3.4 Data kinematis dan deformasi geser lintang tangensial pada nodal 4,3, 6.

Bila ke dalam persamaan 3.18 di atas, dimasukkan harga persamaan

keseimbangan dalam bentuk berikut ini :

Ty= M + My, (3.19)
Di mana persamaan konstitutif momen bending pada setiap sisi dinyatakan oleh :
Ms - Db (Bs,s i UBn,n) (3.20)
N (1-v)
Mns - Db 2 (Bs,n + B11,3) (3'21)

Maka persamaan untuk fungsi independen daripada deformasi geser lintang pada

persamaan 3.18 dapat diexpresikan menjadi :

Db l1-v
Isz = B“ Bs,ss & U~Bn,ns * _2_(Bs,nn o E'u,ns) (3.22)
5
B,
o' Bsi
Bni
s
-
i J
a) variasi B, b) variasi 3,

Gbr. 3.5 Variasi B, dan p; sepanjang sisi elemen

3



Dari gambar 3.5a, tampak bahwa rotasi 8, bervariasi linier sepanjang sisi-k,
dengan masing-masing rotasi pada nodal ujung sebesar B, dan B, , sehingga harga

interpolasi rotasi pada sisi-k dalam arah normal (searah sumbu-n) adalah :

S
By = (- )y + 1By (3.23)

s
Ly
Apabila B, diturunkan terhadap s lalu n, hasilnya adalah :
Pons =0 (3.24)
Dan dari gambar 3.5b, tampak bahwa rotasi [, bervariasi secara kuadratik
sepanjang sisi-k, di mana pada kedua ujung sisi-k terjadi rotasi sebesar By dan B,
sedangkan pada nodal tengah terdapat inkrimental rotasi tangensial (AP«) yang
membentuk pertambahan fungsi interpolasi secara kuadratik pada interp?[asi linter di

bawahnya, maka rotasi s menjadi :

B = (1-“‘)Bm+( )Bsﬁ‘*L—(l —-) A (3.25)
Ly ' Ly ko Ly

Lalu turunan kedua dari 3; terhadap n dan s adalah

Bem =0 (3.26)
8
Bsss = L2 —5 ABu (3.27)

Dari persamaan (3.22), (3.24) dan (3.26) akan diperoleh persamaan deformasi

geser sebagai berikut :
=¥ (3.28)
= 7 Psgss 3.2
DS

Dan dari persamaan (2.31b), (2.32b), (3.27) dan (3.28) diperoleh suatu

persamaan unik untuk elemen DKMT ini, yaitu :

2
-—szk Bs ss _E ¢k ABsk (3.29)
di mana,
D, 12 8 B
b
¢k:D—E2“= -0 I (3.30)
8 k k
keterangan :
=rasio Poisson ; h =tebal pelat ; Ly = panjang sisi-k

k = 5/6, nilai koefisien koreksi GT dari Reissner
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¢ = faktor besarnya pengaruh deformasi geser lintang

Keunikan dari faktor ¢} adalah dalam hal menjaga konsistensi perilaku elemen.

Faktor h*/Ly* , dalam persamaan tersebut, memberikan suatu hasil yang mampu membuat

elemen DKMT berperilaku sesuai teori Reissner-Mindlin ketika menganalisa elemen pelat

tebal dan juga sesuai teori pelat Kirchhoff-Love ketika menganalisa pelat tipis di mana

harga h%/Li® mendekati nol sehingga otomatis nilai deformasi GT dapat diabaikan,

akibatnya masalah shear locking teratasi dengan cara ini.

Deformasi geser lintang tangensial Y, dany  pada sisi k dan m (lihat
e TS4m

gbr.3.4) dapat diproyeksikan dalam deformasi GT di sudut / yaitu Y., dan y

f
| Yot |
atau |
[t |
‘Y .
dengan ;

Nilai i, k dan m untuk pers.(3.32) dan (3.33) dinyatakan dalam tabel II ;

5

Sm ‘Sk
\ Zi ] Al 'Cm Ck

Aj = Ck Sm - Cm Sk

[ |

\Y_Yzij

] [ Ysu

\

\ZSme

Tabel II : Nilai i, k dan m untuk persamaan (3.31-33)

1

2

(= N LV I -

3

m
6
4
5

kita peroleh ;

Yxz)
Tyz)
Ixzy
Yy

Yxz3

Yyz3

—

e/ Ay
O R,
-85 LA
Cst Ay
0
0

0

0
Sal Ay
-Cy /Ay
- Sg / As
Ce / A3

33

S I A
Gl By
0
0
8 iy
«CeF e

J

(3.31)

(3.32)

(3.33)

(3.34)



dimana ;

A] =C4 Sﬁ-C6 S4
A2=C5 S4—C4 Ss (3.35)
A3 =Cg S5 -Cs S

: . ; [y\
Seperti halnya pada elemen-elemen triangular [A1, A2, H1, Z2] deformasi geser \LI
dapat diinterpolasi secara independen dengan cara sebagai berikut :

(v) = <xyz> ij <_ﬂ]> (.36)

dimana N; adalah fungsi bentuk linier (lihat tabel I) untuk elemen triangular. Dengan

mengkombinasikan expressi (3.34 -36), kita peroleh ; 3
i B2 1 fy.) 3.37
07 g [ Ie) 27

dimana ; O_fn)=(1’sz4 Yszs Zszﬁ)

Sty e (s

_ A A A A
[Ny] (_ié —ix (%“'%E-'J (:%k %n) (3.38)

{Z“} adalah vektor daripada variabel deformasi GT independen.
Variabel {y,} kemudian digantikan oleh variabel {AB,}dengan menggunakan

persamaan konstitutif dan persamaan keseimbangan pada ketiga sisi elemen triangular.
Hasilnya telah dinyatakan oleh persamaan (3.29) dan karenanya diperoleh ;

(vh= { i’: }=[BSAB] (ABA ) (3.39)
dimana ; i
[(re-gorfes (Sen-2t)es (Sta-Ssq)gq
[ SAB] 2 ik i]ig . (C4; A )¢ ( Al 4 x}% (3.40)
A2 A
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3.6 KONSTRAIN DISKRIT KIRCHHOFF MINDLIN.

Seperti telah disebutkan sebelumnya bahwa Modifikasi Fungsional Hu-Washizu
digunakan untuk mengembangkan elemen pelat bending triangular DKMT ini.
Adapun prinsip modifikasi Hu-Washizu (2.40-41) dinyatakan sebagai :

= ; b S
= 1-Iint + HCXI J 1_Iint Hmt L Hmt (3.41)
dengan
2, (By.By) = —A<x) [H,] {x) da (3.42)

mt(w By, By, (YT }]= 51 () [H] {r} da + I ({y} () da  (3.43)

Bila fungsi IT diturunkan terhadap T dan kemudian dinyatakan dalam kondisi

stasioner, akan diperoleh :
(6 b)) aa - o ”
AC

Persamaan 3 .44 harus dipandang sebagai persamaan konstrain dan dalam hal ini

ekuivalen dengan :

ikSTS (Y -Y,)ds = 0

k =456 (3.45)

Ysz = Wis T B
T, konstan pada sepanjang sisi-k.

Dengan menggunakan persamaan 3.25, maka persamaan konstrain 3.45 akan

dinyatakan dengan diskrit untuk ketiga sisi elemen, didapat suatu hubungan berikut :

L
{(YSZ —Isz) ds =0 (3.46)
dan
Bs} [c. s, ] {B }
k k X -
=3 (3.47)
{Bn . Lsk CkJ B, i |
Dalam sistem koordinat lokal nodal , kita memiliki persamaan berikut,
Ly L
Wi (Bsi +Bg) + — ABy - Lyy, =0 (3.482)
k

Apabila persamaan 3.28 dan 3.47 digunakan untuk menyatakan persamaan 3.48a

ke dalam sistem koordinat global, maka akan diperoleh :
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L, L,
wj—wi+ T(Ck‘ﬁxi+sk' ﬁyi)+ T
(3.48b)

2L,
( Ck. ij + S,. Bﬂ- )+ T (l-HI)k) zﬁﬁsk =)
Nilai i,j dan k untuk persamaan (3.48a,b) dipresentasikan pada tabel III;

Tabel Il : Nilai i, j dan k untuk persamaan (3.47-48)

i |k
1 ]2/ 4
213 1|s
3016

Jika persamaan (3.48) diaplikasikan pada ketiga sisi elemen, vektor {AP,} dapat
dinyatakan dengan derajat kebebasan final {u,} oleh ;

(ABa) =[A){Uy) (3.49)
[An) =[Asp] " [AW] (3.50)
dimana ; B ~
%u (1+ ¢4) 0 0
[Axp]= 0 25 (1+¢s) 0
i ¢ 0 $Le(+d) | (3.51)

[Aﬁ\ﬁ] selalu merupakan matrik diagonal non-singular untuk kasus pelat tipis
maupun pelat tebal dan karenanya kompatibilitas dari Bs tidak hilang pada elemen

DKMT.

[ DX IYa g -Xg) -V o o |
: 2 2 2 2 0
=l ¢ 0 0 ] 2*R.2Y¥R 1 -X3p-¥u
[Aw] 2 2 > 2| G5
1 -Xi3 -X13 ~Xj3 = Y13
L 1 2 2 0 0 ¢ : 2 2

[Aw] adalah matrik 3x9 yang bergantung hanya pada koordinat nodal sudut.
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3.7 MATRIX KEKAKUAN ELEMEN DKMT.

Dari persamaan 2.5, kita dapat melihat hubungan antara regangan (g) dan
peralihan rotasi (B), di mana regangan merupakan fungsi linier dari turunan pertama
peralihan rotasi. Dan dari persamaan 2.10, kita lihat definisi dari kelengkungan (), yaitu
sebagai turunan pertama dari peralihan rotasi.

Secara umum, hubungan kelengkungan akibat deformasi bending dengan

peralihan nodal dirumuskan sebagai :

) = [3,] {v,) 63
di mana untuk elemen DKMT ini, matrik kelengkungan yang menghubungkan vektor

kelengkungan dan vektor peralihan nodal didefinisikan sebagai :

[Bb] - [Bbﬁ] * [BbAB] [An] : ) (3.54)

Sedangkan matrik geser, yang menghubungkan vektor deformasi geser dengan

vektor peralihan nodal dirumuskan sebagai :

tv} = [BJJ{u.} (3.55)

Di mana untuk elemen DKMT ini, matrik regangan geser-peralihannya

didefinisikan sebagai :

[.] = [B.g] [ (3.56)

Pada waktu menghitung matrix kekakuan [K,] dan [K,], variabel nodal pada pers.3.16

harus dirubah terlebih dahulu susunannya, sebagai berikut :

<Un> = (Wl Bxl Byl Wo sz Gyz w3 8}-{3 9y3> (35?)
dimana : 86 =-By 8 =Bq ; 1=1,2, (3.58)
Dengan menggunakan persamaan kelengkungan 3.53 dan 3.54, maka rumusan

energi deformasi bending 3.42 untuk elemen dengan luas A® dinyatakan sebagai

1 '
My = 2{Us) [Kel{U,} (3.59)
di mana,
T
x| = ! B,] [H,][B,]da (3.60)
At

Sedangkan untuk energi geser (3.43), dengan memasukan persamaan 3.55 dan

3.56, yaitu :

M = 5 (Ua) [Ky] (UL} (3.61)

B | -
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di mana, .
x| = AI B, [1][B,] aa (3.62)
Dalam kasus pelat tipis, di mana harga ¢,<<l, besarnya energi geser transversal
tersebut , persamaan 3.43, dapat diabaikan (IT, = 0).
Selanjutnya, setelah mendapatkan rumusan matrik kekakuan geser dan lentur,
akan diperoleh matrik kekakuan elemen dalam bentuk penjumlahan keduanya, yaitu :
[K] = [Ks] + [Ki] (3.63)
Matrik kekakuan tersebut dihitung dengan cara integrasi numerik (menggunakan
titik integrasi HAMMER) yaitu dengan menggunakan 3 buah titik integrasi. Formula
integrasi numerik memungkinkan untuk mengevaluasi matrik [K] dalam bentuk sebagai

berikut :

[K]= ?[Bs(&i M, )]T[H, IB.(&.m,)]o,dedi(e, ,m,)| | ' (3.64)

dimana :
NPI = jumlah titik integrasi numerik yang digunakan pada elemen referensi
&, ni = koordinat parametrik titik I

; = koefisien (atau pembobot) untuk titik I
Formula diatas memungkinkan untuk mengintegrasi secara eksak untuk fungsi dalam &.

Tabel IV berikut ini memberikan bobot ®; dan koordinat &; dan m;  untuk integrasi

Hammer.
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Tabel IV : Integrasi numerik formula Hammer untuk segitiga

Gidiie Nombre Coordonnées Polds
] de points r
i po 4 m @y
n
1 1 1/3 1/3 1/2
§
2 3 1/2 1/2
0 1/2 1/6
1/2 0
.
3 2 k) 1/6 1/6
213 1/6 1/6
1/6 2/3
1
4 3 4 113 143 = '=27/96
3/5 1/5 "25/96
A 115 35
(1]
! 4 6 a a
a=(,44594849 0915 9635 I-2a a } 0,1116 9079 4839 005
a 1-2a
b=009157621 3509771 b b
1-2b b }0,0549 7587 1827 661
1 b 1-2b
5 7 1/3 1/3. 9/
6+/15 155+Jﬂl%
as a a As— X =
JK 21 1-2a a 2 400
. = 0,4701 4206 4105115 a 1-2a = 0,06619707 63%4 2530
b :& b= i_a b b i_A_
b 7 1-2b b 240
= 0,1012 86507323 456 b 1-2b =0,0629 69590272 4135

o 17 e anag -_)_51 0 y(En 1)

Formules intégrant exactement des polyndmes §f nj d'ordre m (avec i+ j< m)
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BAB IV
FORMULASI ELEMEN ALLMAN

4.1 UMUM

Struktur pelat dimana hanya bekerja gaya-gaya membran (tarik, tekan dan geser
pada bidang permukaan tengah pelat) disebut struktur membran. Modelisasi struktur
demikian dengan metode numerik yang dalam hal ini Metode Elemen Hingga telah lama
dikenal. Dengan metode ini, struktur pelat membran didiskritisasikan menjadi
sekumpulan elemen-elemen yang gabungannya mewakili sifat struktur sebenarnya.
Dengan demikian metode ini adalah suatu metode pendekatan dan perilaku struktur
tersebut diwakili oleh gabungan daripada elemen-elemen tersebut. Baik buruknya
modelisasi tersebut sangat bergantung kepada bagaimana kita memformulasikan elemen-
elemennya.

Aplikasi teknik pertama dengan metode elemen hingga oleh Turner et al [T1]
memperkenalkan elemen yang dinamakan CST (Constant Strain Triangle) yaitu elemen
triangular dengan tiga buah nodal.  Elemen ini adalah elemen membran triangular yang
paling simpel, ekonomis dan secara luas telah dikenal dan banyak dipakai untuk
memecahkan berbagai macam bentuk dan tipe struktur membran. kesederhanaan elemen
ini terlihat dari jumlah nodalnya yang sedikit (hanya diujung sudut triangular) dan hanya
mempunyai dua buah d.k. (derajat kebebasan) per nodal. Dapat dipahami bila modelisasi
struktur membran dengan menggunakan elemen ini membutuhkan jumlah elemen yang
banyak agar perilaku struktur yang sebenarnya dapat terwakili.

Meskipun saat ini elemen tersebut dianggap kurang memiliki kecepatan konvergensi
yang baik untuk menyelesaikan problem elastisitas bidang, elemen ini masih saja
digunakan untuk modelisasi cangkang dengan pendekatan faset plan. Hal ini disebabkan
karena tidak banyak pilihan elemen membran triangular tiga nodal yang dapat
dikombinasikan dengan elemen bending triangular tiga nodal. Kesulitan tentu saja muncul
pada waktu penggabungan elemen membran dan bending, yaitu tidak adanya derajat
kebebasan rotasi bidang (6,) pada setiap nodalnya. Rotasi ini disebut drillirig rotations
dan akan menimbulkan singularitas matrik kekakuan elemen yang mempunyai enam d k.
per nodal bilamana elemen-elemen berkumpul pada bidang datar. Untuk mengatasi hal ini
biasanya digunakan kekakuan fiktif [ke,] untuk melengkapi kekurangan d.k. rotasi 6,.
Penambahan ini tidak boleh merubah energi intern per elemen. Karena itu kekakuan fiktif
harus demikian kecil dan hanya seperlunya agar term diagonal nol secara numerik tidak
lagi dinilai nol.

40



D.J. Allman [A3] memberikan alternatif baru dengan memperkenalkan elemen
membran triangular tiga nodal dan tiga d.k. per nodal. Yaitu dengan d.k. ketiga
merupakan Rotasi Drilling (Gbr.4.1).

u3
31V3
823
up | 1
Y.V vi
0 u2
|
z 5 o
922

X, U
Gbr.4.1. Elemen membran triangular Allman.

Dalam penelitian ini elemen membran Allman dipilih untuk mendampingi elemen
bending DKMT dalam formulasi cangkang model faset plan. Daya tarik dari pada elemen
ini adalah jumlah nodal yang hanya tiga dan penampilannya yang jauh diatas elemen CST
dan performanya mendekati elemen LST (Linear Strain Triangle). Sedangkan jumlah d.k.
total elemen Allman (9 d.k. total) lebih sedikit dibandingkan dengan elemen LST (12 d.k.
total). Akibatnya proses perhitungan elemen Allman lebih cepat dibandingkan dengan
elemen LST. Elemen LST adalah elemen triangular klasik dengan enam buah nodal (tiga
buah nodal diujung sudut dan tiga buah nodal di tengah sisi elemen). Namun demikian
waktu perhitungan menjadi lebih lama.

Dalam penelitian ini, penggunaan satu titik integrasi Hammer digunakan dalam
menghitung matrix kekakuan elemen Allman. Masalah spurious modes yang muncul
akibat pengurangan titik integrasi akan diatasi dengan teknik stabilisasi MacNeal and
Harder [M2]. Sehingga pada akhirnya diperoleh elemen Allman yang simpel, efisien dan
dapat diandalkan karena tidak mempunyai problema Spurious modes. Hasil kombinasi ini
adalah sebuah elemen cangkang dengan 18 d.k.
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4.2 APROKSIMASI FUNGSI PERALIHAN

Aproksimasi fungsi peralihan (Gbr. 4.2) dinyatakan oleh :

b= 2 (e o]

k=46

(4.1)

ul
Y,V vl

Gbr 4.3 Sistim koordinat kartesian dan normal tangensial pada sisi elemen.

Fungsi bentuk N; dan Py dapat dilihat pada tabel I - bab 3.
Sk dan C adalah cosinus arah sisi k atau sisi i-j.

Aupk adalah variabel nodal pada sisi tengah k = 4, 5, 6 (Gbr.4.2) dan merupakan
inkrimental peralihan dalam arah normal sisi k.
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k=Cki+Sk] ; mk=Ski-Ckj (4.2)

Xii i

i ; L > Xi TX-Xi S Vi TYi-Vi

(4.3)
Perhatikanlah sisi ij dari triangular pada gambar 4.2-3. Peralihan u; adalah peralihan
tangensial yang sejajar dengan sisi i-j dan diinterpolasi secara linier,sedangkan uj
peralihan dalam arah normal sisi i-j dan diinterpolasi secara kuadratik. Asumsi ini

mengantar kita pada persamaan berikut ;

u(s) =u. & =(1-s) ui +5' uy : SI:LS; (@.4)
ui =u Ce+vi Sk uy =y Ck +vj Sk - #
Un(s) =8 . i = (1-8) upi +5' uy; + 45" (1-5) Aug (4.5)
Uni =Ui Sk-viCx 5 Uy =uiSg-viCx  ;  Aupk =up - ;_[Uni + upj)

i r—u;i -b kr—ulk _... | qu--—uu—h S’:‘
Up; (o %(uni +Upj)
O
n, u, - I
v Auyy =5(84~65)

Gbr 4.4 Peralihan pada sisi elemen .

Derajat kebebasan pada nodal tengah setiap sisi akan dieliminasi sehingga pada akhirnya
akan diperoleh elemen dengan hanya memiliki variabel nodal diketiga nodal sudutnya.
Diferensiasi pertama pada persamaan (4.5) dan dengan menyatakannya pada nodal i dan
j, maka akan diperoleh :

(4.6)
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=Lk (g, .0,
kita dapatkan pula ; Auik 8 10 -6 (4.8)

atau ;

Auyy = % (82 = Gzl) ; Augs = Léi (923 - 92'.2) ; Augg :LBG' (ezl “ 823} (4.9)

dimana 6,; and 0 adalah rotasi drilling dimana vektornya berarah normal pada bidang
elemen. Dari persamaan (4.1) dan (4.9), Allman dapat membangun elemen triangular

dengan matrix kekakuan berorde 9x9 (gambar 4.1), dimana :

=2 Ze e, o)

(4.10)

4.3 VEKTOR DEFORMASI MEMBRAN

Komponen deformasi membran ey, e, dan exy diperoleh dari peralihan u, v dengan relasi

(

yang biasanya ;

ou
AiE
{e]: €y =Y = >:[Bm]{Un}
o) |ov_ o
Ok Oy (4.11)
dimana ; <Un>=<ul Vi Uz V3 Uz V3 eq 922 823>
dan matrix [By]adalah :
[Bu) = [Buc] [Buol] @412

| IfY23 0 yu 0 yp O _f
[Binc] = ﬁl 0 X3 0 x3 0 x21J

%32 Y23 X13 Y31 X21 Y12 (4.13)
Matrix [Bp,] diatas ini adalah sama seperti elemen CST .
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1
Dalam penelitian ini, digunakan satu titik integrasi Hammer (§=n=§) dalam

menghitung matrix kekakuan elemen, sehingga diperoleh :

é(ylza -v3) ‘;‘(Y%I -y3') é(yéz ~vh)
1 1

[Budd =55 o) Hdod)  Ldi-sd)

1 1 b

*(le)’zl“xlﬂlz.) "[X32)’32—X21Y21) _(X13Y13—X32Y32)
|3 3 3

L

(4.14)

4.4 MATRIX KEKAKUAN ELEMEN ALLMAN
Pada akhirnya diperoleh matrix kekakuan elemen membran triangular dari Allman
sebagai berikut : 2
[Km] = [ [Bin) "[Hun) [Bm) d
A (4.15)

dimana [Hm] matrix elastisitas. Dalam hal plane stress, material isotrop linier elastis,
matrix [Hy,] adalah ;

( I v 0 |
[H"‘]I(LE?) v o1 0
(1-v)
LY (4.16)

dimana E modulus Young dan v adalah rasio Poisson.

karena matrix [Bn] dan [H,] adalah matrix konstanta, maka matrix kekakuan dapat
langsung dihitung tanpa integrasi numerik. Matrix kekakuan elemen membran dinyatakan
oleh :

[Km] = A [Bm]T[Hm][Bm] (4.17)

Pada waktu penggabungan elemen membran dengan elemen bending dalam koordinat
lokal, susunan variabel nodal pada matrix [By,] harus diubah sebelum transformasi matrix
kekakuan ke sistim koordinat global, sebagai berikut ;

(un )=(u1 vi 021 u2 v2 822 u3 v3 0,3 (4.18)
Penggunaan satu titik integrasi Hammer dalam menghitung matrix [K,] akan
menimbulkan defisiensi rank matrix kekakuan [K,]. Seharusnya secara teoritis Rank
matrix kekakuan elemen membran triangular dari Allman adalah -
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Zrank =Zderajat kebebasan - Zrigid body motion = 9 - 3 = 6.

Tetapi dalam hal ini terjadi defisit rank sebanyak 3 buah dan dari perhitungan hanya
diperoleh rank = 3.

Untuk mengatasi ini MacNeal [M2] mengusulkan stabilisasi matrix kekakuan
dengan menambahkan matrix kekakuan [Kgp;] dan [Kstab2] pada elemen Allman, yaitu

[Km] - [Km] * [Ksmbl] * [Ksmbz] (4.19)
dimana :
1 .05 -05]
Bsa] = EAhm'é[-o_s 1 -0.5| (4.20)
05 05 | J
[Kyap2] = EAR10C {R} (R) . (4.21)

X32 Y32 1 X3 y3 1 %21 Y21 1>
dan: (R)=(-22 Y2 1 X oym 1 x4 yy 1}
an : (R) < 4A T 4A T3 4A 4A T3 T aA T aA 3 \had)

[Kstab1] adalah suatu matrix yang beroperasi dalam 6, , 02 , 0,3, matrix ini mempunyai
rank = 2. [Ksab] adalah suatu matrik kekakuan yang mempunyai rank = 1 dan
beroperasi dalam variabel nodal ; uj, v, 6;}, uy, v2, 62, u3, v3, 0,3 . Penambahan
kedua matrix ini terhadap [Kpy] akan menghilangkan defisit rank dan sekaligus

meniadakan spurious modes. Walaupun demikian, penambahan [Kstab1] dan [Kseapz Jtidak

boleh mengubah besaran energi membran, karenanya koef 10 diberikan terhadap matrix

kekakuan stabilisasi.

Keuntungan menyertakan d.k. rotasi drilling pada elemen membran adalah
karena umumnya program elemen hingga mempunyai 6 d.k. per nodal. Sehingga kita
tidak perlu menambahkan kekakuan fiktif seperti yang sebelumnya dilakukan pada
elemen CST. Selain itu elemen Allman lebih performa dibandingkan dengan elemen CST.
Sehingga bila kita menggabungkannya dengan elemen triangular bending yang juga hanya
memiliki d k. pada nodal sudut maka, dapat kita harapkan kombinasi ini akan lebih
kompeten dibandingkan dengan CST. Menyertakan rotasi normal juga akan menghindari
kita dari kondisi singularitas matrix kekakuan (term zero pada diagonal matrix
kekakuan) bilamana gabungan elemen mendekati bidang datar. Keuntungan lainnya
bila kita menggunakan elemen yang hanya memiliki variabel nodal pada hanya nodal

sudut adalah kemudahan dalam preparasi mesh dan efisiensi komputasi.
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BAB YV

FORMULASI ELEMEN CANGKANG
FASET TRIANGULAR DKMT18FS

5.1. UMUM

Pendekatan elemen cangkang faset (Facetted Shell Element) sering digunakan
dalam mendiskritisasikan struktur cangkang. Geometri suatu cangkang bentuk
sembarang selalu dapat direpresentasikan sebagai gabungan dari elemen cangkang
faset triangular 3 nodal (Gambar 5.1). Pendekatan ini sangat sering digunakan
dalam memodelisasi struktur cangkang dan terdapat pada banyak program metode
elemen hingga. Elemen cangkang faset diperoleh dengan mengkomb}nasikan elemen
membran dan bending. Gabungan efek membran dan bending direalisasi pada tahap
penggabungan sebagai transformasi variabel nodal dalam reper global (peralihan dan
rotasi). Pada model pendekatan ini kopling membran bending tidak diperhitungkan
dan terdapat diskontinuitas normal antar pertemuan elemen,

Elemen cangkang faset adalah elemen cangkang dimana peralihannya
didasarkan pada representasi kartesian dan solusi yang diperoleh dengan model ini,
konvergensinya akan menuju solusi teori (eksak) apabila jumlah elemen diperbanyak.

Dalam bab ini akan diperkenalkan secara mendetail sebuah elemen yang
dinamakan DKMT8FS, dimana bagian membrannya direpresentasikan oleh elemen
Allman dan unsur bending oleh elemen DKMT. Variabel nodal setelah
penggabungan adalah peralihan U, V, W dan rotasi 6x, 0y, 6, yang mengelilingi
sumbu global X, Y dan Z. (Gambar 5.1)
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XU
Gbr. 5.1.

Cangkang dimodelisasi dengan sekumpulan elemen cangkang faset

5.2 MATRIX KEKAKUAN ELEMEN

Matrix kekakuan elemen cangkang faset DKMTI18FS dibentuk dari gabungan
matriks kekakuan membran dan bending dalam sistim koordinat lokal. Elemen
membran yang dimaksud adalah elemen Allman triangular 3 nodal dengan derajat
kebebasan per nodal u, v dan 0, dalam sistim koordinat lokal. Sedangkan elemen
triangular bending dipilih elemen DKMT triangular 3 nodal yang memiliki derajat
kebebasan w, Oy dan By dalam sistim koordinat lokal.

Matrix kekakuan elemen bending DKMT telah dibahas pada bab III,
sedangkan matrix kekakuan elemen membran Allman juga telah dibahas pada bab
IV. Kedua matriks kekakuan tersebut dibentuk pada sistim koordinat lokal, jadi
sebelum disusun menjadi matriks kekakuan struktur maka matriks kekakuan elemen
harus ditranformasikan ke dalam sistim koordinat global. Pada sistim *koordinat
lokal masalah spurious modes pada elemen membran Allman telah diatasi dengan
cara yang telah dijelaskan pada Bab IV. Dengan demikian diharapkan masalah ini
tidak lagi menjadi problem pada tahap penggabungan dan tahap transformasi ke

sistim global.
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[k]global

Matriks [Q]" adalah matriks transformasi variabel nodal (translasi/rotasi) dari sistim koordinat lokal ke

sistim koordinat global
(b) Koordinat Global
Gbr. 5.2
Elemen Tipe Cangkang Faset
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5.3 KOORDINAT LOKAL DAN MATRIX KOSINUS
ARAH

Dalam menganalisa struktur cangkang, struktur cangkang tersebut
didiskritisasi menjadi sekumpulan elemen triangular 3 nodal dimana ketiga titik
nodal tersebut selalu terletak pada satu bidang datar.

Vektor posisi suatu titik p pada permukaan suatu elemen referensi dalam

sistim koordinat global didefinisikan oleh :

Xen| X;
B o

dimana X;, Y; dan Z; adalah koordinat titik nodal elemen dalam sjstim koordinat

global dan N; adalah fungsi bentuk yang telah diberikan pada tabel Bab 3.

Z
F,—) X
T]
" 1)‘\
(0,0)'1 (1 0) 7
Elemen Referensi % Elemen Riil
Gbr. 5.3.
Reper lokal x,y,z
Vektor basis a; dan a, adalah :
Xai X3
{al}:{xp,§}= Yoi [ {aQ}:{xp,n}: Y3, (5.2)
Zy Z3

Dalam formulasi elemen cangkang, perlu didefinisikan suatu reper orthonormal unik

[Q] pada suatu titik di dalam elemen. Katakanlah titik tersebut adalah titik p.
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Normal n dari setiap elemen dalam koordinat global dapat dihitung dari hasil

perkalian vektor a; dan a,. Vektor normal n didefinisikan sebagai berikut :

Jflxl aynag
S P B

apnay

=2A

alf\az

(ool |

(X21Y31)~(X5,Y2))

2A = ((Y21231 ~Y31Z5))" +(2Z21%, - Z31Xa1)" + (X1 Y3, - Xlezl)z)i

(53)

(5.4)

(5.5)

A adalah luas elemen segitiga yang dihitung dari koordinat nodal dalam sistim

global. Demikian juga untuk t| dan t, didefinisikan sebagai berikut :

tj;= k An : ty =n Aty
dimana : (k) = (0 0 1)
1

2 2 . 52\5
Ly =(X21 +Y3) +221J2

X1 =Xy = X
Y5=Y,-Y
Zy =ZZ—Z]

(5.6)

Dengan mengetahui vektor n , t; , t, maka matrix transformas: [Q] dapat

didefinisikan sebagai berikut [Ref. B4, hal 378] :

v b

a
] n, n 2
_ Xy By . _
J— s B, S| 0y ; a = l+n,

(5.7)



dimana:a=1+n, ; jika a=0(ns=ny,=0 ;n,=-1), maka :

() =00 5 ()=(0 10

dan dalam hal khusus ini [Q] menjadi :

rhx x| nx} {1: 0! 0]
[Q] ‘{tw tay [Ny | =[0!-1] 0} (5.8)
tiz Etzzinzj [0{ 0 E‘l
5.4. TRANSFORMASI KOORDINAT LOKAL KE KOORDINAT
GLOBAL

Matrix kekakuan elemen cangkang dibentuk dalam sistim koordinat lokal (x, y
dan z) sehingga sebuah matrix transformasi diperlukan untuk mentransformasikan
matrix kekakuan elemen tersebut dari sistim koordinat lokal ke sistim koordinat
global (X, Y dan Z).

Pada waktu input data, koordinat nodal diberikan dalam sistim koordinat
global. Proses perhitungan matrix kekakuan dalam sistim koordinat lokal
membutuhkan data koordinat nodal dalam sistim koordinat lokal. Matrix
transformasi tersebut dapat dihitung dengan cara yang mudabh..

Peralihan dan rotasi dari sebuah titik nodal pada sistim koordinat lokal dengan

sistim  koordinat global dihubungkan oleh sebuah matriks [Q]" sehingga

memberikan :
u Ul exl exl
vi=[Q'§v . 10, 1=[Q]" 6y (5.9)
w w) 6, 0,
dimana :
" [_<tl>—|l i-tl}( ty tlZ-I
[Q] =‘<t2>|= tax ty taz - (5.10)
Il |

ny fy Nz
dimana [Q]" adalah sebuah matriks ukuran 3 x 3 yang menunjukkan cosinus arah

sudut yang dibentuk antara dua sumbu yang ditinjau.
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Untuk keseluruhan peralihan yang terjadi pada nodal-nodal dari sebuah

elemen dapat dituliskan sebagai berikut :
{un}=[T] {un}giob (5.11)

Dari hukum transformasi orthogonal [Ref. Z1, hal. 17-19], matrix kekakuan

elemen dari sebuah elemen dalam koordinat global menjadi :
(K] giopar = [T1" Ky [T] (5. 12a)
Dalam kedua persamaan di atas [T] adalah sebuah matriks diagonal dimana

diagonalnya dibentuk dari matriks [A] yang jumlahnya sama dengan jumlah nodal

dalam satu elemen. Untuk elemen triangular 3 nodal maka :

{[A] 0 ol

[T]=} 0 [A] O (5.12b)
8x18 LO 0 [A]J
dimana :
_|[e]" o
Ljﬂ = . [Q]T} (5.12¢)

Dari persamaan-persamaan di atas kita dapat mengambil kesimpulan bahwa

hubungan antara koordinat global dengan kordinat lokal adalah sebagai berikut :

X X
y=[Q]' <Y (5.12d)
z Z
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5.5 TEGANGAN DAN GAYA DALAM ELEMEN

Suatu analisa cangkang, selain menghasilkan peralihan pada titik-titik diskrit
yang ditinjau, juga diharapkan memberikan hasil perhitungan tegangan dan gaya
dalam pada titik-titik tersebut. Dari hasil perhitungan tahap pertama, biasanya kita
dapatkan peralihan nodal dalam sistim koordinat global {U,}. Peralihan nodal dalam
sistim koordinat lokal {u,}, dapat kita hitung dengan menggunakan persamaan 5.6
pada level elementer untuk setiap elemen. Dengan diperolehnya peralihan {u,},
maka selanjutnya kita dapat menghitung gaya dalam, gaya membran {N}, momen

bending {M} dan gaya geser {T} dengan persamaan berikut :

{ N} =[Hn] [Ba] {ua} o= (B3
{ M} =[Hy] [By(&n)] {un} (5.14)
{ T }=[H] [By&n)] {ua} (5.15)
dimana :
(N)=(N, N, N (5.16)
(M)=<Mx M, Mxy> (5.17)
<T>=<Tx T},> (5.18)

[Hn], [Hs] dan [H] sama dengan yang dinyatakan oleh persamaan (2.28),
(2.29) dan (2.30). Matrix [B.,] dinyatakan oleh pers.4.14 dengan urutan variabel
nodal yang telah disesuaikan berdasarkan pers.4.18, matrix [By(E,n)] dan [By(€,1)]
dinyatakan oleh pers.(3.54) dan (3.56) dengan urutan variabel nodal yang telah
disesuaikan berdasarkan pers.3.57.

Besaran tegangan dapat kita hitung dari persamaan berikut :

(o) =25 M)+ N 619)
{t} =% {T} (5.20)
dimana :
(c)z(csx oy o"xy> (5.21)
(t>=<1xz tyz> (5.22)
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Seperti telah dikemukakan dalam bab 2.6, bahwa energi deformasi geser
memerlukan suatu faktor koreksi geser, dikarenakan besarnya tegangan GT yang
diperoleh melalui persamaan 2.21 atau 5.20 adalah konstan, padahal hal ini tidaklah
sesuai dengan asumsi kita terhadap pelat sebagai suatu struktur 2 dimensi. Karena
dalam teori ini tegangan GT bernilai maximum di permukaan tengah pelat dan
bernilai nol pada permukaan atas dan bawah. Dengan demikian secara teoritis
distribusi tegangan geser adalah merupakan fungsi quadratik dalam arah z. Oleh
karena itu tegangan GT (1. Ty) perlu dikoreksi lagi dengan faktor koreksi
tegangan geser transversal Timoshenko. Besarnya koreksi tegangan geser ini
besarnya adalah 3/2 (gambar 5.4) dan diperkalikan dengan harga tegangan geser
transversal pada bagian tengah pelat dari hasil perhitungan numerik. Sedangkan nilai

tegangan geser pada permukaan superior dan inferiornya adalah nol.

321

a) Teori eksak b) Teori Reissner-Mindlin

Gbr. 5.4
Distribusi tegangan geser sepanjang ketebalan pelat pada bidang y-z.

Tegangan utama (principal stress) dapat dihitung sebagai berikut :

2
Oy +0y Gy~ 0y ;
+4/l = +0yy”
2 2 Xy
<

-

oy +0, o -0, ) .
= e
L 2 2 d J
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Resultan Tegangan Utama dapat dihitung sebagai berikut :

M

5

M, +M, M, -M, : .
2 + 5 +Mw

- (5.24)
M, +M, M, -M, Y :
= +M
2 7 ) M
Tegangan geser maksimum pada bidang xy adalah :
(Gi - 02)
max — 5 (5.25)

Formulasi-formulasi di atas, baik untuk tegangan maupun gaya dalam elemen
adalah dalam bentuk fungsi £ dan n. Dengan demikian untuk menghitung tegangan
maupun gaya dalam pada suatu titik di dalam elemen, koordinat natural titik yang

akan dihitung tersebut harus dimasukkan ke dalam persamaan di atas.

5.6 BEBAN NODAL EKIVALEN
Karena dalam proses penyelesaian sistim persamaan [K]{U} = {F}, elemen

gaya dalam vektor gaya {F} harus dalam bentuk beban terpusat yang bekerja pada
titik diskrit elemen (nodal), maka beban-beban yang bekerja pada struktur yang
akan dianalisa (khususnya beban terbagi rata), harus diubah dulu menjadi beban-
beban terpusat yang bekerja pada titik diskrit elemen. Beban pusat tersebut dikenal
dengan sebutan Beban Nodal Ekivalen.

Formulasi dari beban nodal ekivalen akibat beban terbagi rata adalah

berdasarkan persamaan ;

{Ei} =, .[Na dA (5.26)
A

dengan :

{F } = Gaya nodal ekivalen

Z1
f, = beban terbagi rata
N; = fungsi bentuk

Energi luar ], yang dinyatakan dengan gaya nodal ekivalen ini adalah :
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M.y = f f, wdA=(u,) {F,} (5.27)
Ae

dimana untuk elemen cangkang faset triangular DKMT8FS :
(F,)=(0 0 F,, 0 0 0: ... 100 Fy 00 0)  (528)

dan : Fan=Fp=F;3=Af,/3
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BAB VI

UJI GERAKAN BENDA KAKU

6.1. TUJUAN PENGUJIAN

Dalam bab VI dan VII, dipresentasikan beberapa uji numerik yang untuk
memeriksa karakteristik konvergensi dan ketepatan dari formulasi elemen DKMT18FS.
Berbagai test cangkang yang sederhana di mana kelengkungan ganda biasa digunakan
oleh kebanyakan kalangan peneliti untuk menguji kebenaran formulasi suatu elemen.

Target dari pengujian ini adalah untuk menunjukkan kecepatan konvergensi dan
perbandingan jumlah elemen dalam struktur cangkang tersebut. )

Bentuk-bentuk cangkang dapat dibagi menjadi bentuk setengah bola
(Hemispherical Shells), bentuk silinder (Cylindrical Shell Roofs), bentuk pipa (Circular
Cylindrical Shells), bentuk parabol-hiperbola (Paraboloid-Hyperboloid Shells) dan bentuk
Helicoidales. Sehingga struktur cangkang terbentuk dari kelengkungan yang nol, positif
atau negatif. Struktur-struktur tersebut diberi beban terbagi rata atau beban terpusat
dengan kondisi batas yang bervariasi (jepit, sisi bebas). Bentuk-bentuk pengujian tersebut
(wi Benchmark atau Benchmark Test) merupakan uji standar keandalan elemen

cangkang yang dirangkum oleh R.J. MacNeal dan R.L. Harder [Ref. M4, hal. 3-20].

6.2. PENGUJIAN KEABSAHAN ELEMEN
6.2.1. UJIRANG

Secara teoritis terdapat 6 Gerakan Benda Kaku (komponen-komponen vektor
translasi u’ dan vektor rotasiBR). Pada elemen cangkang DKMT18FS dengan 6 derajat
kebebasan pernodal, tidak memiliki Spurious Mode. Ini dibuktikan dari test eigen value.
Catatan :

Pada test eigen value diperoleh 6 nilai eigen yang nol, ini berarti tidak mempunyai

Spurious Modes.
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6.2.2. PERGERAKAN BENDA KAKU (RIGID BODY MOTION)

Sebuah struktur kontinu solid yang sederhana memiliki 6 gerakan benda kaku
yakni 3 komponen vektor translasi (ET) dan 3 komponen vektor rotasi((;}R ). Gerakan
benda kaku direpresentasikan dengan benar jika deformasinya nol dan energi intern
deformasinya (ITj, ) adalah nol.

Jika variabel nodal elemennya pernodal adalah:

(up);=(U V. W 8y 6y 67)

maka vektor (u,); untuk Translation Modes i, j, k adalah [Ref. B4, hal. 440]

(=
—
]
_——
(5
=
Il

(1 0000 0 -

ul=j:{u,),=(0 1 00 0 0 (6.1)

0% =i :(u,). =(0 -z, Y, 1 0 0
0% =j:(uy),=(z; 0 -X; 0 1 0 (6.2)
O =k:(u)=(-Y, X, 0 0 0 1)

6.2.2.1. Uji pada Sebuah Elemen
Untuk membuktikan bahwa sebuah elemen dapat menghasilkan keadaan

deformasi nol sehubungan dengan gerakan benda kaku, maka kita dapat ményelesaikan

suatu persoalan linier:

(k] {usR} = {0} (6.3)
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di mana {u;R} mengandung komponen yang nilainya merupakan definisi gerakan benda
kaku, seperti yang telah disebutkan pada persamaan 6.1. Pada beberapa nodal, nilai
kondisi batas diberikan, sedangkan pada nodal lainnya dibebaskan. Hasil perhitungan
pada nodal yang dibebaskan harus sesuai dengan persamaan 6.1. Suatu gerakan benda
kaku dinyatakan telah direpresentasikan dengan baik oleh sebuah elemen, bila persamaan
6.3 dipenuhi dengan baik.

Berikut ini disajikan satu buah contoh pengujian. Pengujian tersebut dilakukan
terhadap sebuah elemen pada bidang tiga dimensi. Dua dari tiga nodal, yakni nodal 1, dan
2, diberi kondisi batas dan diberikan lendutan sesuai persamaan 6.1, satu-persatu dan
secara bersamaan. Uji gerakan benda kaku terpenuhi jika nodal yang dibebaskan
mengikuti lendutan yang diberikan.

Hasil numerik pada nodal 3 menunjukkan hasil yang baik pada Translation

Modes.
Y 1 (-10,-10,0)
2 (0,-10,0)
X 3 (0,0,10)
Z
1 : 2
Gbr. 6.1 Uji pada Sebuah Elemen
Modes U \% \W% B 0y 0,
U 1.00 0.00 0.00 0.00 0.00 0.00
V 0.00 1.00 0.00 0.00 0.00 0.00
W 0.00 0.00 1.00 0.00 0.00 0.00
Uvw 1.00 1.00 1.00 0.00. 0.00 0.00

Tabel 6.1 Hasil Numerik Uji pada Sebuah Elemen
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6.2.2.2 Uji pada Beberapa Elemen

Untuk membuktikan hasil yang baik dari uji gerakan benda kaku, dapat pula
dilakukan pengujian terhadap gabungan beberapa elemen dengan minimal sebuah nodal

di dalam domain dengan melakukan uji sebagai berikut:

1. Kondisi batas pada variabel nodal diberikan sesuai dengan persamaan 6.1 dan 6.2
untuk nodal 1, 2, 3 dan 4.

2. Setelah  penggabungan matriks elementer, langkah selanjutnya adalah proses
penyelesaian persamaan 6.3. Hasil perhitungan pada nodal 5, 6, 7 dan 8 harus
sesuai  dengan persamaan 6.1 dan 6.2 dan deformasi harus nol pada semua titik.
Jika proses perhitungan tidak dapat dilakukan, berarti terdapat Spurious Mode

sebelum dan sesudah penggabungan elemen-elemen.

Pengujian ini disajikan dalam tiga buah contoh. Pengujian tersebut dilakukan
terhadap sepuluh elemen. Pada contoh pertama, sepuluh elemen tersebut berada pada
sebuah bidang datar. Pada contoh kedua, elemen-elemen tersebut tidak lagi berada pada
sebuah bidang datar, namun keempat nodal dari masing-masing elemen terletak pada
bidang datar. Pada contoh ketiga, masing-masing elemen tidak terletak pada bidang datar

dan keempat nodal dari setiap elemen juga tidak terletak pada bidang datar.

Nodal 1, 2, 3 dan 4 diberi kondisi batas, dan lendutan menurut persamaan 6.1
dan 6.2, satu-persatu dan secara bersamaan. Sedangkan nodal-nodal lainnya dibebaskan.
Hasil pengujian harus menunjukkan lendutan pada nodal-nodal yang dibebaskan sesuai

dengan persamaan 6.1 dan 6.2.

Pengujian menunjukkan hasil yang baik untuk semua Modes, dan pada semua

kasus.
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1 (0,0,0)
2 (10,0,0)
3 (10,10,0)
4 (0,10,0)
5(3,3,0)

6 (6,3,0)

7 (6,6,0)

8 (3,6,0)

1 (0,0,10)

2 (10,0,10)
3 (10,0,0)

4 (0,0,0)
5(0,10,10)
6 (10,10,10)
7 (10,10,0)
8 (0,10,0)

Elemen

Konektivitas

1 1-2-6

2-3-7

3-4-8

4-1-5

1-6-5

2-7-6

3-8-7

4-5-8

O loo ||| & Wk

5-6-7

5-7-8

—
o

(@) Kesepuluh Elemen Terletak pada Sebuah Bidang Datar

&

Elemen

Konektivitas

—_—

1-2-6

1-6-5

2-3-6

3-7-6

3-4-7

4-8-7

1-5-8

1-8-4

O oo |10 [h | W [

5-6-7

=

5-7-8

(b) Kesepuluh Elemen Datar dan Terletak pada Sebuah Ruang Tiga Dimensi

1(0,0,10)
2 (10,0,10)
3 (15,0,-5)
4(0,0,0)
5(-5,15,15)
6 (10,10,10)
7 (10,10,0)
8 (0,10,0)

Elemen

Konektivitas

1-2-6

1-6-5

2-3-6

3-7-6

3-4-7

4-8-7

1-5-8

1-8-4

5-6-7

ol v |wW |-

—

5-7-8

(b) Kesepuluh Elemen Datar dan Terletak pada Sebuah Ruang Tiga Dimensi

Gbr. 6.2. Uji Pada Beberapa Elemen

62




untuk nodal 5(3,3,0), nodal 6(6,3,0), nodal 7(6,6,0) dan nodal 8(3,6,0)

Modes | Nodal U \% W Ox Oy 0z
U 5 1.00 0.00 0.00 0.00 0.00 0.00
6 1.00 0.00 0.00 0.00 0.00 0.00

7 1.00 0.00 0.00 0.00 0.00 0.00

8 1.00 0.00 0.00 0.00 0.00 0.00

\% 5 0.00 1.00 0.00 0.00 0.00 0.00
6 0.00 1.00 0.00 0.00 0.00 0.00

7 0.00 1.00 0.00 0.00 0.00 0.00

8 0.00 1.00 0.00 0.00 0.00 0.00

W 5 0.00 0.00 1.00 0.00 0.00 0.00
6 0.00 0.00 1.00 0.00 0.00 0.00

7 0.00 0.00 1.00 0.00 0.00 0.00

8 0.00 0.00 1.00 0.00 0.00 50_00

Ox 5 0.00 0.00 3.00 1.00 0.00 0.00
6 0.00 0.00 3.00 1.00 0.00 0.00

7 0.00 0.00 6.00 1.00 0.00 0.00

8 0.00 0.00 6.00 1.00 0.00 0.00

Oy 5 0.00 0.00 -3.00 0.00 1.00 0.00
6 0.00 0.00 -6.00 0.00 1.00 0.00

7 0.00 0.00 -6.00 0.00 1.00 0.00

3 0.00 0.00 -3.00 0.00 1.00 0.00

0z 5 -3.00 3.00 0.00 0.00 0.00 1.00
6 -3.00 6.00 0.00 0.00 0.00 1.00

7 -6.00 6.00 0.00 0.00 0.00 1.00

8 -6.00 3.00 0.00 0.00 0.00 1.00

Uvw 3 1.00 1.00 1.00 0.00 0.00 0.00
6 1.00 1.00 1.00 0.00 0.00 0.00

7 1.00 1.00 1.00 0.00 0.00 0.00

8 1.00 1.00 1.00 0.00 0.00 0.00

0x0yOz 5 -3.00 3.00 0.00 1.00 1.00 1.00
6 -3.00 6.00 -3.00 1.00 1.00 1.00

7 -6.00 6.00 0.00 1.00 1.00 1.00

8 -6.00 3.00 3.00 1.00 1.00 1.00

Tabel 6.2

Hasil Numerik untuk Uji pada Beberapa Elemen, Contoh Pertama

63




Modes | Nodal U \% W Ox Oy 0z
U 5 1.00 0.00 0.00 0.00 0.00 0.00
6 1.00 0.00 0.00 0.00 0.00 0.00
7 1.00 0.00 0.00 0.00 0.00 0.00
8 1.00 0.00 0.00 0.00 0.00 0.00
% 5 0.00 1.00 0.00 0.00 0.00 0.00
6 0.00 1.00 0.00 0.00 0.00 0.00
7 0.00 1.00 0.00 0.00 0.00 0.00
8 0.00 1.00 0.00 0.00 0.00 0.00
W 5 0.00 0.00 1.00 0.00 0.00 0.00
6 0.00 0.00 1.00 0.00 0.00 0.00
7 0.00 0.00 1.00 0.00 0.00 0.00
8 0.00 0.00 1.00 0.00 0.00 0.00
Ox 5 0.00 | -10.00 | 10.00 1.00 0.00, | 0.00
6 0.00 | -10.00 | 10.00 1.00 0.00 0.00
7 0.00 0.00 10.00 1.00 0.00 0.00
8 0.00 0.00 10.00 1.00 0.00 0.00
Oy 5 10.00 0.00 0.00 0.00 1.00 0.00
6 10.00 0.00 | -10.00 | 0.00 1.00 0.00
7 0.00 0.00 | -10.00 | 0.00 1.00 0.00
8 0.00 0.00 0.00 0.00 1.00 0.00
0z 5 -10.00 | 0.00 0.00 0.00 0.00 1.00
6 -10.00 | 10.00 0.00 0.00 0.00 1.00
7 -10.00 | 10.00 0.00 0.00 0.00 1.00
8 -10.00 | 0.00 0.00 0.00 0.00 1.00
UVW 5 1.00 1.00 1.00 0.00 0.00 0.00
6 1.00 1.00 1.00 0.00 0.00 0.00
7 1.00 1.00 1.00 0.00 0.00 0.00
8 1.00 1.00 1.00 0.00 0.00 0.00
0x0y0z 5 0.00 | -10.00 | 10.00 1.00 1.00 1.00
6 0.00 0.00 0.00 1.00 1.00 1.00
7 -10.00 | 10.00 0.00 1.00 1.00 1.00
8 -10.00 | 0.00 10.00 1.00 1.00 1.00
Tabel 6.3

Hasil Numerik untuk Uji pada Beberapa Elemen, Contoh Kedua
untuk nodal 5(0,10,10), nodal 6(10,10,10), nodal 7(10, 10,0) dan nodal 8(0,10,0)
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Modes | Nodal U \% W Ox Oy 0z

U 5 1.00 0.00 0.00 0.00 0.00 0.00
6 1.00 0.00 0.00 0.00 0.00 0.00

7 1.00 0.00 0.00 0.00 0.00 0.00

8 1.00 0.00 0.00 0.00 0.00 0.00

Vv 5 0.00 1.00 0.00 0.00 0.00 0.00
6 0.00 1.00 0.00 0.00 0.00 0.00

7 0.00 1.00 0.00 0.00 0.00 0.00

8 0.00 1.00 0.00 0.00 0.00 0.00

\%\% 5 0.00 0.00 1.00 0.00 0.00 0.00
6 0.00 0.00 1.00 0.00 0.00 0.00

7 0.00 0.00 1.00 0.00 0.00 0.00

8 0.00 0.00 1.00 0.00 0.00 0.00

Ox 5 -0.04 -14.35 14.24 0.90 -0.10Q. -0.06
6 -0.04 -10.19 10.00 1.04 0.02 0.00

7 -0.12 0.23 9.65 1.00 -0.03 0.05

8 -0.10 -0.54 9.83 0.97 0.10 0.06

Oy 5 14.59 0.00 4.59 0.00 0.88 0.00
6 10.21 -0.12 -9.33 0.11 0.93 -0.04

7 0.13 0.00 -9 87 -0.04 L. 12 0.04

8 0.67 0.12 0.21 0.04 0.93 -0.11

Oz 5 -14.24 -4 .35 0.04 -0.06 0.10 0.89
6 -9.83 9.46 0.10 0.06 -0.10 0.97

7 -9.65 10.23 0.12 0.05 0.03 1.00

8 -10.00 -0.18 0.04 0.00 -0.02 1.04

Uvw 5 1.00 1.00 1.00 0.00 0.00 0.00
6 1.00 1.00 1.00 0.00 0.00 0.00

7 1.00 1.00 1.00 0.00 0.00 0.00

8 1.00 1.00 1.00 0.00 0.00 0.00

Ox0y0z 5 0.30 -18.70 18.87 0.82 0.88 0.84
6 0.33 -0.85 0.78 1.22 0.85 0.92

7 -9.64 10.46 -0.10 1.01 [,12 1.10

8 -9.44 -0.60 10.09 1.01 1.01 (.99

Tabel 6.4

Hasil Numerik untuk Uji pada Beberapa Elemen, Contoh Ketiga
untuk nodal 5(-5,15,15), nodal 6(10,10,10), nodal 7(10,10,0) dan nodal 8(0,10,0)
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BAB VII

UJI KONVERGENSI

7.1 Uji Konvergensi

Beberapa di antara uji konvergensi yang diperkenalkan di sini merupakan Uji
Benchmark (Benchmark Test) yang disarankan oleh R.J. MacNeal dan R.L. Harder [Ref
M4, hal. 3-20], antara lain:
1. Bentuk Setengah Bola (Spherical Domes)
2. Panel Silinder (Cylindrical Shell Roofs)
3. Pipa Silinder (Circular Cylindrical Shells) 7

4. Bentuk Helicoidales atau Twisted Beam.

Dengan menganggap cangkang yang dianalisa adalah dengan ketebalan konstan
dan kondisi batas yang diketahui serta tidak ada deformasi awal, maka dapat digunakan

elemen-elemen segitiga sebagai pembanding, yakni:

1. DKT18FS (Diskrit Kirchhoff) adalah sebuah elemen 3 nodal dengan 6 derajat
kebebasan per nodal, tipe pendekatan bidang datar (Facet Plane), merupakan
gabungan elemen membran CST dan elemen lentur DKT [Ref. B7]. Menggunakan 3

titik integrasi Hammer.

2. DST-BL18FS adalah sebuah elemen 3 nodal dengan 6 derajat kebebasan pernodal,
tipe pendekatan bidang datar (Facet Plane), merupakan gabungan elemen membran
CST dan elemen lentur DST-BL [Ref. BS5 dan Ref L2]. Menggunakan 3 titik

integrasi Hammer.
3. DST-BKI18FS adalah sebuah elemen 3 nodal dengan 6 derajat kebebasan per nodal,

tipe pendekatan bidang datar (Facet Plane), merupakan gabungan elemen membran

CST dan elemen lentur DST-BK [Ref. B6]. Menggunakan 3 titik integrasi Hammer.
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4. DST-BK18 adalah sebuah elemen 3 nodal dengan 6 derajat kebebasan per nodal,
tipe pendekatan Degenerasi Tiga Dimensi dan dengan kontinuitas normal antar elemen

yang dipertahankan. [Ref. K3, bab 7]. Menggunakan 3 titik integrasi Hammer.

5. DST-BL18 diformulasi seperti DST-BK 18, namun bagian lenturnya didekati dengan
fungsi kwadratik Py yang merupakan fungsi yang kompatibel dengan DST-BL
[Ref. BS dan Ref, L2].

6. DKT-CST [Ref. C5] adalah elemen datar (flat element) 3 nodal dengan 6 derajat
kebebasan per nodal. Merupakan superposisi dari pelat lentur DKT dan elemen
tegangan bidang CST. Transformasi antara derajat kebebasan lokal dan global

diterapkan pada elemen ini. >

7. DKT-CST* [Ref. C5] adalah elemen lengkung 3 nodal dengan 6 derajat kebebasan
per nodal, hasil superposisi elemen lentur DKT dan elemen membran yang
dikembangkan dalam bagian ke dua dari referensi [Ref CS, hal. 1645-1653].
Transformasi antara derajat kebebasan lokal dan global juga diterapkan pada elemen

ini.

8. DKT-LR adalah elemen datar (flat element) 3 nodal dengan 6 derajat kebebasan per
nodal. Merupakan hasil superposisi elemen lentur DKT dan elemen membran tegangan
bidang LR [Ref. C1]. Elemen membran ini adalah elemen yang diformulasikan oleh
D.J. Allman [Ref Al], tetapi apa yang dikembangkan dalam referensi [Ref Cl]

memberikan hasil yang lebih baik.

9. DKT-CST-15 adalah elemen datar (flat element) 3 nodal dengan 5 derajat kebebasan
per nodal. Elemen ini tidak memiliki derajat kebebasan Drilling Rotation. Qleh karena

itu elemen ini hanya memiliki 15 derajat kebebasan total. [Ref C5]
10. DKT-CST-15RB adalah elemen datar (flat element) 3 nodal dengan 5 derajat

kebebasan per nodal. Elemen ini menggabungkan derajat kebebasan lokal dan global,

seperti yang telah diulas pada bagian ke tiga dari referensi [Ref. C5, hal. 1653-1655].
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Sedangkan elemen quadrilateral adalah:

1. DKQ24FS (Diskrit Kirchhoff) adalah sebuah elemen 4 nodal dengan 6 derajat
kebebasan per nodal, tipe pendekatan bidang datar (Facet Plane), merupakan
gabungan elemen membran klasik Q4 dan elemen lentur DKQ [Ref BS].

Menggunakan 2 titik integrasi Gauss untuk masing-masing sumbu & dan 1.

2. DKMQ24 (Discrete Kirchhoff Mindlin Quadrilateral 24) adalah elemen cangkang
empat nodal dengan masing-masing enam derajat kebebasan pada setiap nodal. Teori
Reissner-Mindlin-Naghdi dan Teknik Diskrit dari Fungsional Modifikasi Hu-Washizu
yang diterapkan memungkinkan penggabungan antara Hipotesa Kirchhoff-Love dan
Hipotesa Reissner-Mindlin-Naghdi. Berlaku Hipotesa Kirchhoff-Love (deformasi
geser lintang diabaikan) apabila digunakan pada struktur tipis dan berlaku Teori
Reissner-Mindlin-Naghdi (deformasi geser lintang diperhitungkan) apabila digunakan

pada struktur tebal.

3. DKQ24 (Diskrit Kirchhoff) [Ref. K3] adalah sebuah elemen 4 nodal dengan 6
derajat kebebasan per nodal, tipe pendekatan Degenerasi Tiga Dimensi, merupakan
gabungan elemen membran klasik Q4 dan elemen lentur DKQ [Ref BS].

Menggunakan 2 titik integrasi Gauss untuk masing-masing sumbu £ dan n.

4. JET [Ref. J1] adalah sebuah elemen 4 nodal dengan 6 derajat kebebasan per nodal.
Merupakan gabungan dari elemen lentur DKQ [Ref B8] dan elemen membran 3

derajat kebebasan per nodal (u, v, ® atau u, v, Q).

5. HYBRID [Ref. K4] adalah sebuah elemen 4 nodal dengan 5 derajat kebebasan per
nodal. Elemen ini dikembangkan berdasarkan Prinsip Hellinger-Reissner yang
dimodifikasi untuk kondisi Relaxed Element Compatibility. Elemen ini juga

berdasarkan teori cangkang tipis dengan Hipotesa Love-Kirchhoff,
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6. MORRIS-24 dan MORRIS-48 [Ref M3].

Catatan: Kami tidak dapat mengevaluasi elemen DKMT18FS untuk mesh yang sangat

besar. Hal ini dikarenakan keterbatasan PCFEAP® versi 2.02.

7.2 Bentuk Setengah Bola (Spherical Domes)

- bebas Y,V

Meshing A Meshing B
Gbr. 7.1 Bentuk Setengah Bola (Spherical Domes)
Data:
R=10m; h=0.04 m; R’h=250
P=2N;E=6.825x10"Pa; v = 0.3
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Kondisi simetris;
V = Bx = 0z pada sisi AC;
U =0y = 0z pada sisi BD
Kondisi batas: Nilai referensi:

W =0 pada titik B Ua=-Vg=0,094 m

Sebuah kasus yang sering digunakan untuk mengevaluasi performa suatu elemen
cangkang berbentuk setengah bola yang tipis (R/h = 250) dengan kondisi batas bebas dan
4 buah beban terpusat.

Kasus ini diperkenalkan untuk membuktikan tidak adanya Membrane Locking
dan gerakan benda kaku yang baik. Struktur dibagi menjadi empat bagian karena simetri.

Lendutan U, = -Vg yang merupakan hasil uji numerik dfpresentasikan pada
tabel 7.1 dan gambar 7.2.

Sebagai pembanding digunakan elemen DKMQ24, DKT18FS, DST-BL18 dan
DST-BK18 dengan jumlah elemen (N): 2, 4, 6, 8, 10, 12 dan 15. Untuk elemen segitiga
ada 2 macam meshing yakni model A dan B.

Nilai referensi perhitungan berdasarkan teori klasik yang digunakan [Ref M4]
adalah U, = 0.094 m. Sebagai catatan, elemen DST-BK 18, DKMQ24 dan DKMT18FS
memberikan hasil yang baik; konvergen menuju nilai referensi. Sedangkan elemen DST-
BL18, dalam kasus ini, identik dengan elemen DKT18FS; konvergen menuju satu nilai;
0.0925 m. Penyelesaian kasus setengah bola tanpa lubang, dengan mempertimbangkan
Seri Ganda Trigonometri (Double Series Trigonometric) dari metode Raleigh-Ritz

menghasilkan nilai 0.0925 m. Gambar deformasinya dapat dilihat pada gambar 7.3.
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1.2

1.15 A

1.1 4

1.05 4

U (MEH)/U,(REF)

®

0.95 4
0.9 -+
+ DST-BK18(A) —=&— DST-BL18(A)
0.85 - —a— DKT18FS (A) —— DKMQ24
—&— DKMT18FS ——EXACT |
08 T T T L T T T T T T 1
0 2 6 12 14 16
N
Gbr. 7.2 Konvergensi Lendutan U, - Bentuk Setengah Bola
Tabel 7.1: Lendutan U, dan Vg
Nilai referensi: U = U, x 103 =94 dan Vg = Vg x 103 = -94
N |[Meshing | DST-BK18 DST-BL18 DKT18FS DKMQ24 | DKMTISFS
2 A/B 109.2/109.1 98.8/103.1 89.1/92.8 96.04 64.4/71.9
4 A/B 100.8/100.3 96.7/99.4 93.9/96.5 97.95 74.9/79.3
6 A/B 97.3/96.9 94.7/96.3 93.6/95.1 D595 89.0/90.9
8 A/B 95.7/95.3 93.8/94.8 93.1/94.2 94.72 92.2/93.2
10 A/B 94.8/94.4 93.2/94.0 92.8/93.6 94.04 92.9/93.6
12 A/B 94.2/93.9 92.9/93.5 92.6/93.2 93.69
15 A/B 93.8/93.7 92.8/93.2 92.5/92.9
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Z
(a) Proyeksi terhadap Sumbu X f

(c) Proyeksi terhadap Sumbu Z

Wi
&

'y

Gbr 7.3 Deformasi - Bentuk Setengah Bola



7.3 Panel Silinder (Cylindrical Shell Roofs)

diafragma

meshing A meshing B
Gbr 7.4 Panel Silinder (Cylindrical Shell Roofs )

Data:

L=6m;R=3m;h=0.03 m; ¢ =40°

E=3x10"Pa;v=0:f,=-0625x 10" Pa
Kondisi batas:

U =W =0y =0 pada sisi AD
Kondisi simetris:

U =0y =0z=0 padasisi CD; V = 0x= 0, = 0 pada sisi CB
Nilai referensi (Teori Deep Shell):

Wg =-3.61 cm; We=0.541 cm
Nilai solusi analitik (Teori Shallow Shell):

Wp=-3.703 cm; W =0.525 cm
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Kasus yang dipresentasikan pada gambar 7.4 adalah problem yang digunakan
untuk membandingkan performa elemen bidang datar (Facet Shell), lengkung, dan
isoparametrik. Struktur ini memiliki sebuah panel silinder dengan kondisi batas bebas di
sepanjang silinder dan di sisi lain (bidang arah melintang panel) berupa bidang diafragma
kaku. Karakteristik geometri dan mekanik dapat dilihat pada gambar 7.4. Cangkang ini
memiliki beban sendiri (beban terbagi merata vertikal) sebesar f; = -0.625.10% Pa di
seluruh permukaan.

Sebuah penyelesaian analitik berdasarkan Teori Shallow Shell dikemukakan oleh
Scordelis dan Lo [Ref S2]. Penyelesaian tersebut memiliki 2 - 3 % perbedaan
dibandingkan penyelesaian dengan Teori Deep Shell. Deformasi geser lintang kecil sekali,
sehingga dapat diabaikan, dan deformasi membran lebih dominan dibandingkan dengan
deformasi lenturnya. }

Struktur dianalisa seperempat bagian karena simetri. Jumlah mesh beraturan:
N=2. 4, 6, 8, 10, 12, 16 dan 20 elemen sepanjang sisi AB dan BC. Untuk lebih jelasnya
dapat dilihat pada gambar 7.4. Hasil uji numerik elemen quadrilateral DKMQ24 dan
elemen segitiga DKT18FS, DST-BLI18, DST-BK 18, DKMT18FS ditulis pada tabel 7.2
dan gambar 7.5. Kami mengamati bahwa elemen-elemen yang digunakan, memberikan

hasil yang menuju solusi Teori Deep Shell. Elemen DKMTI8FS dan DKMQ24

memberikan hasil yang baik dan hampir serupa.
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*

DST-BK18(A)
—&— DKT18FS (A)
—&— DKMT18FS

—+—Teori Shallow Shell

—a—DST-BL18(A)
——DEKMQ24 ~
—a— Teori Deep Shell

T T I

Tabel 7.2a: Lendutan W
Nilai referensi: Wg = -3.61 cm (-3.707 cm untuk Teori Shallow Shell)

T T

8

T T

10
N

16 18

Gbr 7.5a Konvergensi Lendutan Wy - Panel Silinder

N |[Meshing | DST-BK18 DST-BLI18 DKTI18FS DKMQ24 | DKMTI18FS
2 A/B -2.87/-4.35 -2.96/-4.06 -2.89/-3.98 -4.39 -4.31/-5.89

4 A/B -2.46/-2.74 -2.45/-2.68 -2.44/-2.67 -3.42 -3.53/-3.87

6 A/B -2.88/-3.01 -2.85/-2.96 -2.85/-2.96 -3.48 -3.54/-3.68

8 A/B -3.13/-3.21 -3.11/-3.18 -3.11/-3.17 -3.53 -3.56/-3.64

10 A/B -3.28/-3.33 -3.26/-3.31 -3.26/-3.30 -3.55 -3.58/-3.63

12 A/B -3.37/-3.41 -3.36/-3.39 -3.35/-3.38 -3.57

16 A/B -3.47/-3.49 -3.46/-3.48 -3.46/-3.48

20 A/B -3.55/-3.56 -3.53/-3.54 -3.53/-3.54
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06 In \
i :
s | W //._,/"-
@ + DST-BKIS8(A)
3 -
—8— DST-BLI18(A)
0.4 1 —&— DKTISFS (A)
1 —X—DKEMQ24
0.3 4 —@— DKMT18FS
—0—1‘?0ri Déep Shell
] —+—Teori Shallow
Shell
0-2 L 1 T T T 1] T T T T T T T T IZ
0 2 4 6 8 10 12 14 16 18 20
N
Gbr 7.5b  Konvergensi Lendutan W - Panel Silinder
Tabel 7.2b: Lendutan W
Nilai referensi: We = 0.541 cm (0.552 c¢m untuk Teori Shallow Shell)
N |Meshing | DST-BK18 DST-BL18 DKTI8FS DKMQ24 | DKMTISFS
2 A/B 0.282/0.447 0.274/0.450 0.269/0.444 0.593 0.539/0.889
4 A/B 0.340/0.396 0.332/0.396 0.330/0.394 0.513 0.494/0.587
6 A/B 0.417/0.443 0.411/0.442 0.409/0.441 0.523 0.515/0.557
8 A/B 0.460/0.476 0.456/0.474 0.455/0.473 0.530 0.526/0.549
10 A/B 0.487/0.496 0.482/0.494 0.482/0.493 0.533 0.531/0.546
12 A/B 0.502/0.509 | 0.498/0.507 0.498/0.506 0.336
16 A/B 0.519/0.522 | 0.516/0.521 0.516/0.520
20 A/B 0,530/0.530 0.526/0.528 0.526/0.528
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01

O,O*Xxx"

0,1 1
EXACT
o DST-BKI8
-0,2 v T T v T
0 10 20 30 40
D A

(a) Lendutan V sepanjang Sisi DA

W
EXACT
©  DST-BKIS8
-4 T T T T = 1
0 10 20 30 40 ¢
C B
(b) Lendutan W Sepanjang Sisi CB
Gbr 7.6 Lendutan Sepanjang Sisi DA dan CB (N=12)
Catatan : x = DKMT18FS
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7.4 Pipa Silinder (Circular Cylindrical Shells)

P=1
Y.V
meshing 2 x 2
diafi «
lafragma P=1 _
G €
7 ~
meshing A meshing B
Gbr 7.7 Pipa Silinder (Circular Cylindrical Shells)
Data:
L=6m;R=3m;h=003mdan03 m
v=0.3; E=3x 10" Pa; F; pada C =-0.25 N
Kondisi batas:
U =W =0y =0 pada sisi AD
Kondisi simetris:
W =0y = 8x = 0 pada sisi AB; V =0x=0; = 0 pada sisi BC
U =0y =06z =0 pada sisi CD
Nilai referensi (R/h = 100); Nilai referensi (R/h = 10):
We=-EhWe/P=164.24 We=-EhWe/P=1135]1
Vp=EhVp/P=4114 Ug =Eh Vp /P =1,531
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Struktur seperti pada gambar 7.7 adalah sebuah pipa silinder dengan 2 buah
beban terpusat yang terletak berseberangan dan berlawanan arah. Pada kedua ujungnya

terdapat diafragma yang kaku.

Karakteristik geometri dan mekanik dapat dilihat pada gambar 7.7. Contoh ini
merupakan ujian yang keras untuk elemen cangkang yang menunjukkan bidang deformasi
dari membran kompleks di mana sebagian struktur (di bawah beban terpusat) didominasi
oleh efek lentur + 70 %. Disajikan dalam dua rasio ketebalan, R/h=100 dan 10. Untuk
R/h=100, penyelesaian analitiknya (Teori Kirchhoff) dikemukakan oleh G.M. Lindberg et
al [Ref. L3] dengan memperhatikan solusi dari W. Flugge [Ref F1] yang
mengembangkan deret Fourier. Sedangkan untuk R/h=10 solusi analitis (Teori Mindlin)
yang memperhitungkan efek geser lintang dan dikemukakan oleh K. Bhaskar dan T K.
Varadan [Ref. B9]. )

Cangkang tersebut dianalisa seperdelapan bagian karena alasan simetris dan
sebagai elemen pembanding digunakan elemen-elemen segiempat DKMQ24 dan segitiga
DKTI18FS, DST-BL18, DST-BK18. Kami mengamati kecepatan konvergensi elemen-
elemen untuk meshing biasa dengan N=2,4,6,8,10,12 dan 16, pada sisi AB dan BC.

Hasil numerik dari elemen-elemen yang berbeda disajikan dalam dua laporan
(untuk R/h=100 dan 10) pada tabel 7.3-4(a dan b) dan gambar 7.8-9(a dan b), dalam
fungsi dari jumlah elemen terhadap W, dan V. Gambar 7.10 memperlihatkan deformasi
global dengan mesh 10x10. Deformasi menurut sistem koordinat global, lendutan normal
w pada sisi DC dan BC, serta lendutan tangensial v pada sisi AD telah dipresentasikan
pada gambar 7.11 untuk R/h=100 dan mesh 10x10 dengan menggunakan elemen
DKMT18FS. Sedangkan gambar 7.12-13 mempresentasikan hasil perhitungan dari gaya
resultan N,, Ny dan M pada sisi BC dan pada DC. Gambar 7.14 mempresentasikan gaya
resultan M,, dan N, pada sisi AD. Meshing yang tidak besar menyebabkan beberapa
hasil numerik kurang baik. .

Kasus R/h=10 dipresentasikan pada tabél 7.4 dan gambar 7.9. Dari gambar
dapat ditarik kesimpulan bahwa efek geser lintang berpengaruh dalam kasus ini. Di mana
elemen DKQ24 dan DKTI8FS (yang mengabaikan efek geser lintang) memberikan hasil
yang kurang memuaskan dibanding elemen DST-BL18, DST-BK18, DKMTI18FS dan
DKMQ24.
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Gbr. 7.8a Konvergensi Lendutan W - Pipa Silinder
Tabel 7.3a: Lendutan W (R/h = 100)
Nilai referensi: W = 164.24
N |Meshing | DST-BKI18 DST-BL1S8 DKTI18FS |DKMQ24| DKMTI8FS
2 A/B 10.66/8.87 10.66/8.87 10.65/8.86 14.07 43.22/43.86
4 A/B 84.94/76.99 81.87/76.77 80.86/75.92 101.29 104.82/111.41
6 A/B 128.12/119.28 | 123.10/120.30 | 122.13/119.36 | 138.21 134.16/140.93
8 A/B 147.01/138.52 | 142.53/141.98 | 141.76/141.22 | 155.22 149.27/156.44
10 A/B 155.64/148.27 | 151.77/153.37 | 151.08/152.71 | 162.58 159.19/163.73
12 A/B 159.75/153.52 | 156.46/159.20 | 155.77/158.57 | 165.64
16 A/B 163.11/158.59 | 160.74/163.88 | 159.99/163.24
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Gbr. 7.8b  Konvergensi Lendutan Vy, - Pipa Silinder

Tabel 7.3b: Lendutan V, (R/h = 100)
Nilai referensi: Vp =4.114

N |Meshing | DST-BKI18 DST-BL18 DKTI8FS DKMQ24 | DKMTI18FS
2 A/B 1.015/0.792 1.014/0,792 1.013/0.791 1.95 7.370/10.860
4 A/B 4.302/4.107 | 4.164/4.077 4.114/4.032 5.96 6.016/5.870
6 A/B 4.322/4.264 | 4.201/4.233 4.172/4.203 4.80 4.643/4.679
8 A/B 4.174/4.151 | 4.120/4.135 4.105/4.119 4.45 4.383/4.402
10 A/B 4.140/4.127 | 4.111/4.116 4.102/4.107 4.32 4.283/4.293
12 A/B 4.128/4.120 | 4.110/4.112 4.104/4.106 4.26

16 A/B 4.119/4.116 | 4.111/4.112 4.109/4.109
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Tabel 7.4a: Lendutan We (R/h = 10)

Nilai referensi: We= 11.351 (9.456 untuk Teori de Flugge)

7.9a Konvergensi Lendutan W - Pipa Silinder

N |Meshing | DST-BK18 DST-BLI1S8 DKTI18FS DKMQ24 | DKMTI8FS
2 A/B 6.646/5.719 6.558/5.946 | 6.303/5.794 7.284 7.844/7.388

4 A/B 9.719/9.085 | 9.482/9.724 8.871/9.234 10.302 9.636/10.394
6 A/B 10.20/9.797 10.05/10.30 9.249/9.581 10.744 10.134/10.659
8 A/B 10.41/10.13 10.31/10.51 9.368/9.614 10.979 10.364/10.729
10 A/B 10.54/10.34 10.48/10.64 9.421/9.604 11.173 10.665/10.778
12 A/B 10.64/10.49 10.60/10.73 9.448/9.589 11.350

16 A/B 10.79/10.70 10.78/10.87 9.473/9.564
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Gbr. 7.9b  Konvergensi Lendutan Uy - Pipa Silinder

Tabel 7.4b: Lendutan Uy (R/h = 10)
Nilai referensi: Ug = 1.531

N |Meshing | DST-BK18 DST-BL18 DKTI8FS DKMQ24 | DKMTISFS
2 A=B 1.149 1.178 1.341 1.194 1.695

4 A=B 1.421 1.389 1:512 1.430 1.596

6 =B 1.485 1.464 1.563 1.485 1.568

8 A=B 1.506 1.492 1.583 1.396 1.492

10 A=B 1.516 1.504 1.593 1.413 1.503

12 A=B 1.521 1.511 1.599 1.415

16 A=B 1.525 1.517 1.604
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Gbr. 7.10 Deformasi Global (Mesh 10 x 10)
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Gbr. 7.11 Lendutan Sepanjang DC, BC dan AD (R/h = 100)
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Gbr. 7.12  Gaya Dalam Resultan Sepanjang DC (R/h = 100)
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Gbr. 7.13  Gaya Dalam Resultan Sepanjang BC (R'h = 100)
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Gbr. 7.14 Gaya Dalam Resultan Sepanjang AD (R/h = 100)

: x =DKMTISFS
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7.5 Bentuk Parabol-Hiperbola (Paraboloid-Hyperboloid Shells)

meshing A meshing B

Gbr.7.15 Bentuk Parabol-Hiperbola (Paraboloid-Hyperboloid Shells)

Data:
a=50cm;c=10cm; h=0.8 cm; E =28500 kg/cm?

L = 0.4; beban arah normal terbagi rata f, = 0.01 kg/cm?; Z = (c¢/a?) XY

Kondisi batas:
U=V =W=0y=0,=08;,=0 sepanjang sisi ABCD
Masalah klasik lainnya adalah masalah parabol-hiperbola yang mengalami beban
arah normal terbagi rata f,. Karakteristik geometri dan mekanik dapat dilihat seperti pada

gambar 7.15. Bentuk ini merupakan cangkang yang memiliki kelengkungan Gausian
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negatif dengan kondisi batas berupa garis lurus. Proyeksi dari sumbu Z berbentuk
segiempat, dengan basis 2a x 2a, dan dijepit di sisi-sisinya. Cangkang ini secara geometri
merupakan Shallow Shell.

Gambar 7.16 mempresentasikan konvergensi beberapa elemen sebagai fungsi
dari lendutan dan jumlah elemen. Hasil numerik dikemukakan pada tabel 7.5. Dan
gambar 7.17 menunjukkan nilai dari lendutan w sepanjang sisi OE dan OB hingga mesh
10x10. Perlu diperhatikan bahwa w maksimum tidak pada pusat tetapi bergeser 25 c¢m
dari pusat.

Dari pengamatan didapati kesamaan bahwa program untuk konvergensi enam
elemennya menuju nilai referensi yang diberikan [Ref. B10] kecuali elemen DKQ24FS di
mana garis konvergensinya tidak begitu baik. Hal ini dikarenakan pada formulasi

DKQ24FS, pengaruh Warping Factor tidak diperhitungkan. &
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Gbr. 7.16  Konvergensi Lendutan W, - Bentuk Parabol-Hiperbola

Tabel 7.5: Lendutan W,

Nilai referensi: W, = W, x 103 = 24.60

N |Meshing | DST-BK18 | DST-BL18 | DKTI8FS | DKQ24FS | DKMQ24 | DKMT18FS
2 A=B 37.49 37.75 37.73 18.88 35.90 a3

+ A=B 32.43 31.68 30.32 23.40 26.50 32.35

6 A=B 26.94 26.59 26.62 23.48 24.71 26.05

8 A=B 25.61 25.39 25.87 23.25 24.40 24.26

10 A=B 25.09 24.92 25.52 23.06 24.31 23.83

12 A=B 24.82 24.70 2532 22.90 24.27

16 A=B 24.57 24.49 25.12 22.65
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Gbr. 7.17 Lendutan Normal Sepanjang OB dan OFE - Bentuk Parabol-Hiperbola

Catatan : x = DKMTI18FS
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7.6. Bentuk Helicoidales atau Twisted Beam

mesh 2 x 12

Gbr. 7.18 Bentuk Helicoidales atau Twisted Beam

Data:
Rotasi sebesar 90° antara O dan A
L=12m;b=1.1m; h=0.0032 m dan 0.32 m
E =29x 10% Pa; v =0.22
Kondisi batas:
U=V=W=0,=6,=6,=0 pada perletakan
Data geometri bidang tengah merupakan fungsi dari s dan 6:
X=s8cos0;,Y=20L/n;Z=ssinb
0<0<n/2;-05b<s<+0.5b
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Kasus cangkang berbentuk Helicoidale dengan ujung terjepit dan beban terpusat
di sisi yang lain ini dapat dilihat pada gambar 7.18. Uji ini diperkenalkan oleh R.J.
MacNeal dan R.L. Harder [Ref. M4, hal.3-20]. Kasus ini digunakan sejak tahun 1985
dan menjadi salah satu uji keabsahan suatu elemen cangkang.

Kasus ini memberikan banyak kesulitan untuk elemen yang diformulasi dengan
pendekatan Bidang Datar (Facet Shell), berbentuk segitiga dan quadrilateral dengan
mengabaikan deformasi geser lintang. Penyelesaian dari referensi didasari Teori Balok (di
mana deformasi arah transversal diabaikan), dan dengan atau tanpa memperhitungkan
deformasi geser lintang [Ref. B11].

Hasil yang didapat untuk h = 0.0032 m dan 0.32 m dipresentasikan pada tabel
7.6-7 dan gambar 7.19(a dan b) dengan meshing 2x12, 4x24 dan 6x36. Untuk h = 0.0032
m (L/h = 3750), elemen DST-BLI18FS identik dengan elemen DKT18FS, uptuk h = 0.32
m (L/h =37.5), elemen DST-BLI18FS tidak konvergen menuju solusi yang diberikan oleh
referensi, meskipun deformasi geser lintang sangat kecil pengaruhnya.

Konvergensi yang lebih lamban dicapai elemen DKTI8FS, DST-BLI18 dan
DST-BK18 pada kasus pembebanan tegak lurus bidang (P,=1 dan P,=0). Hal ini
disebabkan karena pada daerah perletakan, perilaku struktur didominasi oleh pengaruh
membran. Dalam hal ini elemen-elemen tersebut menggunakan elemen membran CST.
Untuk kasus beban searah bidang (P,=1 dan P,=0), konvergensi yang baik dicapai oleh
elemen DKT18FS, DST- BL18 dan DST-BK18.

Elemen DKMQ?24 yang dalam hal ini diformulasikan dengan modal pendekatan
Degenerasi Tiga Dimensi memperlihatkan hasil yang memuaskan. Hal ini dikarenakan
pada model ini Warping Factor secara implisit ikut diperhitungkan.

Elemen DKMTI18FS menunjukkan hasil yang cukup memuaskan dan
elemen ini merupakan elemen dengan pendekatan bidang datar yang menghasilkan grafik

yang baik.
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Gbr.7.19a Konvergensi untuk h = 0.32; Py= 1000, Pz = 0
Tabel 7.6: Lendutan untuk h = 0.0032
Beban |Meshing DST- DST- DKT- DKQ- |DKMQ24| DKMTISFS
BK18 BL18 18FS 24FS
Px=.001 2x12 5.294 5.297 5.268 0.000274 5.202 5.255
4 x24 5.200 5.202 5.203 0.000939 5.212 5.249
Pz=0 6 x 36 5.215 5.234 5.258 0.002060
Ref [B11] Uy =
5.316
Px=0 2x12 1.291 1.289 1.285 0.000097 1.274 1.290
4 x24 1.283 1.282 1.282 0.000266 1.284 1,292
Pz= 001 6 x 36 1.284 1.284 1.287 0.000533
Ref [B11] W=
1.296
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Gbr. 7.19b  Konvergensi untuk h = 0.32; Py = 0, Pz= 1000

Tabel 7.7: Lendutan untuk h =0.32

Beban |Meshing | DST- | DST- | DKT- | DKQ- | DKMQ24 | DKMTISES
BKIS | BLIS | 18FS | 24FS
Px=1000] 2x12 | 5355 | 5379 | 5327 | 2077 5.395 <410
4x24 | 5371 | 5447 | 5367 | 6328 5.401 5.543
Pz=0 | 6x36 | 5393 | 5542 | 5434 | 12312
Ref.[B11] Us=
5.424
Px=0 | 2x12 [ 1471 | 1474 | 1465 | 0920 1.624 1.795
4x24 | 1621 | 1640 | 1621 | 2.049 1711 1.893
Pz=1000( 6x36 | 1679 | 1.709 | 1682 | 3.945
Ref.[BI1] W=
1.754
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7.7 Bentuk Kantilever Z Dengan Sudut Antara 90°

A(2.5,+1,+1)
B(2.5,0,0)

Gbr. 7.20 Bentuk Kantilever Z dengan Sudut Antara 90 °
Data:
L=100m;a=10m;b=20m; h=010m;v=03;E=21x 10% Pa

S =0.60 N pada sepanjang CD dan EF

Kondisi batas:

U=V=W=0x=0y=02=0 pada perletakan
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Kasus ini diambil dari Proposed NAFEMS Linear Benchmarks [Ref D2].

Tujuan pengujian ini adalah mengevaluasi tegangan pada nodal.

Struktur merupakan sebuah kantilever tipis berbentuk Z, dengan sebuah sisi
dijepit dan pada sisi lain bebas dan diberi torsi sebesar 1.20 Nm. Gambar struktur dapat

dilihat pada gambar 7.20.

Mesh yang diusulkan adalah 3 x 8. Namun evaluasi ini juga memperlihatkan
konvergensi dari 3 x 4 hingga 3 x 32 elemen. Presentasi tersebut terdapat pada gambar
7.21-22 dan tabel 7.8. Nilai referensi didapat dari solusi analitik [Ref. D2] yang disebut
Target. Evaluasi JET hanya diperoleh pada mesh 3 x 8. Hasil DKMQ24 dan DKMT18FS
baik untuk mesh lebih dari 3 x 8.

1.1
1
s
< 0.9 -
©
= .
=
S 0.8 1
b
o]
0.7 - +« JET - DKMQ24
—&@— DKMT18FS —%—Target
0.6 T T T T T T T T T T T T T T T
0 12 24 36 48 60 72 84 96

Gbr. 7.21 Konvergensi Tegangan arah X pada Titik A - Bentuk Kantilever Z, 90°
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Gbr. 7.22 Konvergensi Tegangan arah X pada Titik B - Bentuk Kantilever Z, 90°

Tabel 7.8: Tegangan arah X pada Titik A dan B

Nilai Referensi dari solusi analitik Target [Ref. D1]: oy, = 108 dan oy, = 36.

N Tegangan Arah x di Titik A Tegangan Arah x di Titik B
JET DKMQ24  DKMTISFS JET DKMQ24  DKMTISFS
3x4 66.239 78.895 21.232 26.050
3x8 115 99.360 88.599 36 31.021 31.502
3x16 110.074 107.106 34.434 33.522
3 x 32 113.270 35.435
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7.8 Bentuk Kantilever Z dengan Sudut Antara 45°

Y

A

4
FL.‘_C_A’_

7 ; gambar pembebanan

Gbr. 7.23 Bentuk Kantilever Z, 45°

Data:
L=100m;a=b=10mh=00Imuv=03E=21x10!1Pa
F, = 10% N pada sepanjang sisi AD dan EF

Kondisi batas:

U=V =W =0x=0y=0z=0 pada perletakan
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Kasus ini diambil dari Guide de Validation des Progiciels de Calcul de
Structures [Ref. G2]. Struktur yang pada gambar 7.23 tersebut adalah sebuah kantilever
tipis berbentuk Z dengan sudut antara sebesar 45°. Pada ujung satu dijepit dan pada

ujung lainnya bebas dan diberikan gaya geser F, sebesar 104 N.

Pengujian dilakukan dengan membagi struktur menjadi 3 x 2, 3 x 4, 3 x 8, dan

3 x 16. Hasil pengujian dapat dilihat pada gambar 7.24 dan tabel 7.9.

1.3
1.2 / i = a
- L \*“r*z-_—_-a A
1.1 4 ] |
1 H—k » —% *
= 0.9 4
g 0.8 -
S—
- J
= 07
= 6 —@— DKMT1sFs WA
05 | _ —— OKMT18Fs OB
- & Teori Balok untuk W pada A
0.4 -
4 % Teori Balok untuk ¢"x pada B
0.3 j # Teori Pelat & Cangkang u
02 T T T T T T T T T T T T T T
0 12 24 36 48 60 72 84 96

N

Gbr. 7.24 Konvergensi untuk Bentuk Kantilever Z, 45°
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Tabel 7.9 Lendutan W, dan oy,

Nilai referensi:

A. Teori Pelat dan Cangkang: W, = 7.15 x 103 m dan oy, = 6.52 x 10° Pa

B. Teori Balok Vlassov : Wp =834 x 10~ m dan oy, = 7.67 x 106 Pa

N W Pada A ox Pada B
3% 2 8 056E-03 7 350E+06
3x4 9.197E-03 8.669E+06
Ix8 8.555E-03 7.865E+06
3x16 8.460E-03 7.643E+06

Keterangan : tegangan dinyatakan dalam sistem koordinat lokal
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7.9 Bentuk Kantilever Kotak (Box Cantilever)

A(0.5,0,0.05)
B(0.8,-0.05,0)

mesh 8 x 3
AZ %

L_ L | L L

N
\

\

i A G
gambar pembebanan

B e i e e
=

Gbr 7.25a Bentuk Kantilever Kotak (Box Cantilever)
Data:
L=10mb=01mh=0005mE=21x10!lPa;u=03
M = 10 Nm pada ujung bebas

Kondisi batas:

U=V =W=0x=06y=0z=0 pada perletakan

Kasus ini juga diambil dari Guide de Validation des Progiciels de Calcul de
Structures [Ref. G2]. Struktur yang pada gambar 7.25 tersebut adalah sebuah kantilever
tipis berbentuk kotak dengan ujung satu dijepit dan pada ujung lainnya bebas dan

diberikan momen torsi sebesar 10 Nm.

103



Pengujian dilakukan dengan membagi struktur menjadi 8 x 3 dan 8 x 6.

Pengujian menunjukkan hasil yang baik. Dan dapat dilihat pada tabel 7.10 berikut ini.

Tabel 7.10: Mesh 8 x 3 dan 8 x 6
Nilai referensi:

Pada nodal A: V=-6.17x 107 m, 6 = 1.23 x 105 rad, Oxy =-1.1x 105 Pa

Pada nodal B: W=-9.87 x 107 m, 8, = 1.97 x 105 rad, Oxy =-1.1x 10% Pa

Nodal A Nodal B
N V 91 va W 9: Oy
8x3 -6.058E-07 1.234E-05 -1.103E+05 -9.871E-07 2.025E-05 |-1.535E+05
8x6 -6.164E-07 1.234E-05 -1.019E+05 -9.861E-07 1.982E-05 | -1.019E-05
Z
A(0.5,0,0.05)
N B(0.8,-0.05,0)

mesh 8 x 6

Gbr. 7.25b  Bentuk Kantilever Kotak (Box Cantilever)
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7.10 Bentuk Silinder Terbuka Dengan Beban Momen Lentur (Slit-

Cylinder Bending)
R X
|
Z b
(a) Deskripsi Masalah
(b) Mesh Diagonal Searah (c) Mesh Diagonal Menyilang
( Cross-hatch Mesh ) ( Cross-diagonal Mesh )

Gbr. 7.26 Bentuk Silinder Terbuka dengan Beban Momen Lentur (Slit Cylinder
Bending)

Data:
R=100.0;b=2nR/N;h=1.0;0=03
Momen pada sisi AB: M = 1.0

Kondisi batas:

U=V =W =0x=0y=0z=0 pada sisi CD
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Bentuk Silinder Terbuka (Slit Cylinder) dengan beban momen lentur (bending)
dapat dilihat pada gambar 7.26. Ujung bawah (CD) dari silinder ini dijepit dan ujung
(AB) yang lainnya diberi beban momen lentur.

Besarnya deformasi yang dihasilkan adalah tergantung jari-jari silinder. Pada
sistem koordinat silinder (polar), momen lentur adalah konstan dan tegangan membran

adalah nol pada seluruh silinder. Solusi lendutan pada ujung bebas (AB) adalah:

v p2 2
D

6=2nR E
D
3

5. Ebh

dimana V adalah lendutan tangensial dan 6 adalah rotasinya.

Analisa Metode Elemen Hingga menggunakan dua macam pola yang berbeda
untuk elemen segitiga, seperti gambar 7.26b dan c. Semua nodal pada elemen terletak
pada bidang silinder; dan nodal tengah pada mesh untuk elemen segitiga terletak pada
pertemuan diagonal silangnya.

Hasil perbandingan lendutannya dipresentasikan pada tabel 7.11-12 dan gambar
7.27-28. Semua jenis DKT (DKT-CST, DKT-CST*, DKT-LR, DKT-CST-15, DKT-
CST-15RB) memberikan hasil yang sama untuk mesh diagonal searah (Cross-hatch
Mesh). Untuk semua elemen, termasuk DKMTI8FS, gaya dalam momen lenturnya
eksak, tegangan membrannya nol dan kesalahan yang relatif kecil terjadi pada lendutan.

Hasil perbandingan lendutan untuk mesh diagonal menyilang (Cross-diagonal
Mesh) dipresentasikan pada gambar 7.28. Hasil yang baik hanya pada elemen DKT-
CST* dan elemen DKMT18FS. Untuk kedua elemen ini, gaya dalam momen lenturnya

eksak, tegangan membrannya nol dan kesalahan yang relatif kecil terjadi pada lendutan.
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Gbr. 7.27  Konvergensi V dan @ Mesh Diagonal Searah

Tabel 7.11 Konvergensi V dan 6 - Mesh Diagonal Searah

N DKT-CST, DKT-CST*, DKT-LR, DKT-CST-15, DKT-CST-15RB DKMTI18FS
¥ U @ VYV dan ©

8 0.974 0.974

12 0.989 0.989

16 0.994 0.994

20 0.996 0.996

24 0.998 0.997

28 0.998
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Gbr. 7.28 Konvergensi V' dan 6 - Mesh Diagonal Menytlang

Tabel 7.12 Konvergensi V dan 6 - Mesh Diagonal Menyilang

N DKT-CST, DKT-SCT-15, DKT-CST- DKT- DKT-LR | DKMTISFS
15SRB CST* V dan 0 V dan 6
V dan 0 V dan O
8 0.454 0.994 0.064 0.974
12 0.462 0.999 0.247 0.989
16 0.490 1.000 0.498 0.994
20 0.343 1.001 0.698 0.996
24 0.615 1.002 0.822 0.997
28 0.998

Berdasarkan hasil pengamatan, dapat ditarik kesimpulan elemen DKT-CST*
dan DKMT18FS sangat efektif. Namun elemen DKT-CST, DKT-LR, DKT-CST-15 dan
DKT-CST-15RB akan menghasilkan nilai yang baik, jika titik pertemuan diagonal pada
setiap 4 elemennya berada pada bidang silinder. Hal ini dikemukakan oleh H. Stolarski ez

al [Ref. S3].
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BAB Vil
KESIMPULAN DAN SARAN

8.1. KESIMPULAN

Dengan menggunakan Metode Elemen Hingga, maka analisa perilaku struktur-
struktur yang penting dengan pembebanan dan bentuk geometri yang kompleks akan
menjadi lebih mudah untuk diselesaikan.

Pendekatan elemen cangkang faser (facetted shell element) dalam
memformulasikan struktur cangkang dengan enam derajat kebebasap per nodal
merupakan suatu pendekatan yang sederhana, di mana penggabungaﬁ elemen membran
dan elemen bending dapat dilakukan dengan superposisi langsung. Dalam penelitian ini,
kami gunakan elemen membran Allman dan elemen pelat bending DKMT. Hasil
penggabungannya diberi nama DKMT | 8FS.

Evaluasi elemen DKMT 18FS menunjukkan karakteristik sebagai berikut -

1. Dapat digunakan untuk kasus cangkang tipis maupun tebal.

2. Dapat merepresentasikan Gerak Benda Kaku dengan memuaskan, dan tidak memiliki
Spurious Mode.

3. Memenuhi semua kriteria uji konvergensi kecuali untuk struktur dengan elemen yang
terpilin dimana pengaruh faktor warpingnya dominan.

4. Tidak ada Shear Locking dan Membrane Locking untuk kasus cangkang tipis.

8.2 SARAN
Dengan melihat hasil yang didapat , maka Elemen DKMTISFS ini dapat
dikembangkan untuk :
I. Cangkang komposit dengan tipe pembebanan statik dan dinamik
2. Kasus non-linier untuk geometri dan material
3. Untuk mendapatkan hasil yang lebih baik pada struktur dimana faktor warpingnya
dominan, maka faktor warping harus diperhitungkan dengan pendekatan konuitas

normal.
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