

THE UNIVERSITY OF
SYDNEY

Sydney Medical School Nepean

Level 5, South Block
Nepean Hospital
Derby Street
Kingswood. NSW. 2747

Email – benjamin.tang@sydney.edu.au

29 December 2020

To Higher Degree by Research Administration Centre:

This report is concerning Velma Herwanto, a PhD candidate currently enrolled at the University of Sydney (student ID 460284686). I attest that changes to her thesis have been made to my satisfaction.

Yours sincerely,

Benjamin Tang PhD, MMed(ClinEpi), MBBS, FCICM
Associate Professor Department of Intensive Care Medicine, Nepean Hospital, Sydney, Australia
Nepean Clinical School, University of Sydney, Australia
Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, University of Sydney, Australia.

IMMUNOMETABOLISM OF CIRCULATING LEUKOCYTES IN PATIENTS WITH INFECTION AND SEPSIS

Velma Herwanto

A thesis submitted in fulfilment of the requirement for the degree of Doctor of Philosophy

FACULTY OF MEDICINE AND HEALTH

THE UNIVERSITY OF SYDNEY

2020

TABLE OF CONTENTS

Preface	xii
Authorship attribution statement	xiii
Acknowledgements	xiv
Publications and presentations	xvi
List of abbreviations	xix
Abstract	xxii

Chapter 1

Introduction	1
1.1 Sepsis is the final common pathway of infection leading to high morbidity and mortality	2
1.2 Pathophysiology of sepsis centralizes in immune response	3
1.3 Massive immune response evokes aberrant mediators production in sepsis that leads to immune dysfunction	6
1.3.1 Hyperinflammatory response in sepsis	7
1.3.2 Immunosuppression contributes to more fatalities in sepsis	8
1.3.3 Mixed inflammatory response in sepsis	9
1.4 Pathophysiology and diagnosis of immune dysfunction in sepsis	9
1.4.1 Pathophysiology of immune dysfunction in sepsis	10
1.4.2 Diagnosis of immune dysfunction in sepsis	20

1.5	Consequences of persisting immune dysfunction in sepsis	24
1.5.1	Infection and long-term mortality due to persistent Immunosuppression	24
1.5.2	Persistent inflammation and accelerated immunosenescence post sepsis	24
1.6	Immunometabolism maintains energy supply of the immune cells	25
1.7	Mitochondria may fail to maintain energy supply in sepsis	28
1.8	Immunometabolic dysfunction in sepsis	30
1.8.1	Monocytes/ macrophages dysfunction	30
1.8.2	Lymphocytes dysfunction	33
1.8.3	Dysfunction of other immune cells	34
1.8.4	Other metabolic changes in sepsis	34
1.9	Linking immune dysfunction with cellular metabolism in infection and sepsis – what do recent studies tell us?	35
1.10	Why is this study important	37
1.11	Rationale to focus this study on peripheral blood mononuclear cells (PBMCs) – an established model reflecting metabolic changes of the immune cells	38
1.12	Rationale to focus this study on mitochondrial function and oxidative stress pathways – the prominent pathways involved in the pathophysiology of infection	38
	References	40

Chapter 2

Study aim and summary	46
-----------------------------	----

Chapter 3

Gene expression regulation in infection patients without and with developed sepsis ..	52
3.1 Background	53
3.2 Material and methods	54
3.2.1 Sample collection and preparation	54
3.2.1.1 Subjects recruitment and case definition	54
3.2.1.1.1 Patients recruitment	54
3.2.1.1.2 Healthy controls recruitment	56
3.2.1.2 Whole blood collection and total RNA extraction	56
3.2.2 Library preparation and sequencing	56
3.2.3 Trimming, alignment and normalization	57
3.2.4 Statistical analysis and data visualization	58
3.3 Results	60
3.3.1 Subject characteristics	60
3.3.2 RNA sequencing results	62
3.3.3 Enrichment analysis on K-means clusters identifies predominant immune response and oxidative stress pathways in patients	65
3.3.4 Enrichment analysis on the DEGs reveals immune response, oxidative stress and apoptosis as the most important pathways in infection	68
3.3.5 Oxidative stress and apoptotic cell death show significant role in sepsis and septic shock	71
3.3.6 Eigengene module analysis unveiled seven modules with distinctive Pathways	72

3.3.7	Analysis of individual genes indicates alteration of mitochondrial function in patients and immunosuppression in septic shock	76
3.3.8	Gene expression were changed with improving condition	80
3.4	Discussion	82
	References	87
	Supplementary figures	90
	Supplementary table	95

Chapter 4

	Immune cells metabolism in <i>in vitro</i> model of sepsis	96
4.1	Background	97
4.2	Material and methods	97
4.2.1	Sample collection and preparation	97
4.2.1.1	Subjects recruitment	97
4.2.1.1.1	Healthy controls recruitment	98
4.2.1.1.2	Patients recruitment	98
4.2.1.2	Peripheral blood mononuclear cells isolation	98
4.2.1.2.1	Cryopreservation of PBMCs	99
4.2.1.2.2	Thawing of PBMCs	99
4.2.1.3	Dead cell removal	99
4.2.2	Stimulation of PBMCs with lipopolysaccharide – <i>in vitro</i> sepsis model	100
4.2.3	Measurement of cellular metabolism	101
4.2.3.1	Coating of Seahorse microplate	101
4.2.3.2	Hydration of sensor cartridge	101

4.2.3.3 Seeding of cells	102
4.2.3.4 Seahorse XF Cell Mito Stress Test – measurement of mitochondrial function	102
4.2.3.5 Measurement of total protein amount – normalization	103
4.2.3.6 Data analyses	104
4.2.3.7 Drug optimization of Cell Mito Stress Test on frozen PBMCs	105
4.2.4 Measurement of oxidative stress	105
4.2.4.1 Measurement of mitochondrial superoxide	105
4.2.4.2 Measurement of total cellular reactive oxygen species (ROS)	106
4.2.5 Measurement of apoptosis	106
4.2.6 Statistical analysis and data visualization	107
4.3 Results	107
4.3.1 Drug optimization for <i>in vitro</i> model of sepsis	107
4.3.2 <i>In vitro</i> LPS model mimic sepsis – mitochondrial function, ROS production and apoptosis	109
4.3.3 Measurement of mitochondrial function in frozen PBMCs – titration of drugs for Cell Mito Stress Test	111
4.3.3.1 Mitochondrial function – fresh vs. frozen PBMCs	111
4.3.3.2 Titration of oligomycin and FCCP for frozen PBMCs	112
4.3.4 Cellular metabolism in patients and healthy donors	113
4.3.5 Dead cell removal	117
4.4 Discussion	119
References	122

Chapter 5

Immune cells metabolism in infection patients without and with developed sepsis	124
5.1 Background (including submitted manuscript)	125
Follow up analysis of the improving patients	164
5.2 Material and methods	164
5.2.1 Patients recruitment and sample collection	164
5.2.2 The assays	164
5.2.3 Statistical analysis and data visualization	164
5.3 Results	165
5.3.1 Patients characteristics	165
5.3.2 Cytokine profiles	167
5.3.3 Recovery of cellular metabolism is observed in sepsis patients who are improving on follow up	167
5.3.4 Reduced oxidative stress is observed in patients with uncomplicated infection who are improving on follow up	168
5.3.5 No change is observed in apoptosis on follow up	170
5.3.6 Clinical recovery is reflected in the changes of RHOT1, TP53 and Bcl-2 gene expressions	171
5.4 Discussion	172
References	176

Chapter 6

Immune cells metabolism in infection patients without and with developed sepsis: analysis on immune cell subsets 177

6.1	Background	178
6.2	Material and methods	178
6.2.1	Subjects recruitment	178
6.2.2	Isolation of cell subsets	179
6.2.3	Cell staining and purity check	180
6.2.4	Measurement of cell metabolism in cell subsets	181
6.2.4.1	Cell number titration for cell subsets	181
6.2.4.2	Drug titration for Cell Mito Stress Test	181
6.2.5	Oxidative stress and apoptosis in monocytes and lymphocytes	181
6.2.6	Statistical analysis and data visualization	182
6.3	Optimization steps – subset separation and optimization for cellular metabolism assay	183
6.3.1	CD14 ⁺ Monocytes	183
6.3.1.1	Separation and purity check	183
6.3.1.2	Determining cell seeding density	184
6.3.1.3	Titration of oligomycin and FCCP for monocytes	185
6.3.2	CD4 ⁺ T lymphocytes	186
6.3.2.1	Separation and purity check	186
6.3.2.2	Determining cell density	187
6.3.2.3	Titration of oligomycin and FCCP for CD4 ⁺ T cells	188
6.3.3	CD8 ⁺ T Lymphocytes	189
6.3.3.1	Separation and purity check	189
6.3.3.2	Determining cell seeding density	190
6.3.3.3	Titration of oligomycin and FCCP for CD8 ⁺ T cells	190

6.4 Results

6.4.1	Sample characteristics	191
6.4.2	Measurement of cellular metabolism in isolated CD14 ⁺ monocytes, CD4 ⁺ and CD8 ⁺ T cells	191
6.4.2.1	CD14+ monocytes from patients with sepsis demonstrate impaired cellular metabolism	191
6.4.2.2	Cellular metabolism in CD4 ⁺ and CD8 ⁺ T cells	192
6.4.3	Gated monocytes	193
6.4.3.1	Oxidative stress on gated monocytes goes up with infection and sepsis	193
6.4.3.2	Oxidative stress in gated monocytes goes down in follow up samples	194
6.4.3.3	Apoptosis in gated monocytes goes down with infection and sepsis	195
6.4.3.4	Apoptosis in gated monocytes remains unchanged in follow up samples	196
6.4.4	Gated lymphocytes	197
6.4.4.1	Oxidative stress on gated lymphocytes goes up with infection and sepsis	197
6.4.4.2	Oxidative stress in gated lymphocytes goes down in follow up samples	198
6.4.4.3	Apoptosis in gated lymphocytes goes down with sepsis	199
6.4.4.4	Apoptosis in gated lymphocytes remains unchanged in follow up samples	200

6.5 Discussion	201
References	208

Chapter 7

Summary and conclusions	211
7.1 Assessment of findings	212
7.1.1 Immune response has important role in uncomplicated infection while in sepsis, oxidative stress and apoptotic cell death have more significant roles	212
7.1.1.1 Significance of these findings	213
7.1.1.2 Study limitations	214
7.1.2 Impaired immune cell metabolism in an <i>in vitro</i> model of sepsis	214
7.1.2.1 Significance of these findings	215
7.1.2.2 Study limitations	216
7.1.3 Bioenergetic failure and increased intramitochondrial oxidative stress are observed in the immune cells of uncomplicated infection and sepsis	216
7.1.3.1 Significance of these findings	217
7.1.3.2 Study limitations	218
7.1.4 Monocytes and lymphocytes show increased oxidative stress in uncomplicated infection without impairment in mitochondrial respiration	219
7.1.4.1 Significance of these findings	220
7.1.4.2 Study limitations	220

7.2 Future directions	221
7.3 Conclusions	222
References	223

Appendices

Appendix One – Published manuscript – Accuracy of qSOFA to predict sepsis mortality in 121 studies including 1,716,017 individuals; a systematic review and meta-analysis ...	224
Appendix Two – Abstract for oral presentation – Metabolic profile of peripheral blood mononuclear cells in patients who are at risk of developing sepsis	260
Appendix Three – Manual purification of total RNA from human whole blood collected into PAXgene Blood RNA tubes	265

PREFACE

Declaration

This thesis is submitted to the University of Sydney in fulfilment of requirements for the degree of Doctor of Philosophy. The work presented in this thesis is original except as acknowledged in the text. I, Velma Herwanto, hereby declare that I have not submitted this material, either in full or in part, for a degree at this or any other institution.

Signature:

Date: 29 July 2020

AUTHORSHIP ATTRIBUTION STATEMENT

In addition to the statements above, in cases where I am not the corresponding author of a published item, permission to include the published material has been granted by the corresponding author.

Student Name: Velma Herwanto

Signature:

Date: 3 August 2020

As supervisor for the candidature upon which this thesis is based, I can confirm that the authorship attribution statements above are correct.

Supervisor Name: A/Prof Benjamin Tang

Signature:

Date: 3 August 2020

ACKNOWLEDGEMENTS

There are no proper words to convey my deep gratitude and respect for my supervisors, A/Prof Benjamin Tang, for his dedicated support, guidance and enthusiasm through my PhD study. He has inspired me to become an independent researcher and helped me realize the power of writing; Prof Anthony McLean, whose encouragement helped me in all the time of research and writing of this thesis. He is my role model of leadership who always aims to complete the tasks to the best of his and the staff abilities; Dr Ya Wang and Dr Maryam Shojaei, who trained me in the lab from zero and generously gave their time to offer me valuable comments toward improving my work. They became families who walked with me through my hardest time.

I am indebted to the people at Department of Intensive Care Medicine, Nepean Hospital: Dr Marek Nalos, which our accidental meeting opened up the opportunity to study overseas and who is kindly allow me to include his recruited patients for this study; Sally Teoh RN, who is memorable not only for her prompt support but also for kind care. There is no way to express how much it meant to me to have been a member of the Centre for Immunology and Allergy Research at the Westmead Institute for Medical Research with Ali Afrasiabi, Prof David Booth, Prof David Brown, Dr Fiona Mackay, Prof Graeme Stewart, Dr Grant Parnell, Jeremy Keane, Dr Jo Gamble, Prudence Gatt, Samantha Law, Prof Sanjay Swaminathan, A/Prof Scott Byrne. Your great advice proved monumental towards the success of this study. Exceptionally, I would like to pay my special regards to Dr Lawrence Ong and Dr Nicole Fewings who went through hard times together, cheered me on and enlightening me with abundant inputs; and Stephen Schibechi for all the troubleshooting and proofreading this thesis.

To the collaborators for lending me their expertise to my technical problems, I am most grateful: Prof Klaus Schughart at Department of Infection Genetics, Helmholtz Centre for Infection Research, Braunschweig, Germany; Dr Tracy Chew at Sydney Infomatics Hub; and the facility managers of the Westmead Institute for Medical Research Dr Joey Lai, Suat Dervish, Dr Edwin Lau and Dr Eve Diefenbach. I also wish to thank all the staff from Westmead Emergency Department whose assistance were a milestone in the completion of this project: Dr Amith Shetty and Dr Kevin Lai in particular, all the consultants and nurses.

This work would not have been possible without the full financial support of the Indonesia Endowment Fund for Education and Nepean Genomic Research Group; and the constant support from the Dean of Tarumanagara University Faculty of Medicine, Dr Meilani Kumala, and Vice Dean, Dr Rebekah Malik, Dr Shirly Gunawan and Dr Ernawati.

Above all, I would like to express my gratitude to my parents-in-law, Mr Untung and Mrs Sri Endang Wahyuni, and the family of my brothers-in-law – Andi, Lidya, Anton, Olivia, Dr Agung, Dr Ayu – for their unfailing emotional support. I deeply thank my parents, Mr Herwanto and Mrs Sundari for their unconditional trust and endless prayer. It was their love that raised me up when I got weary; my brother Alvin Herwanto for his encouragement despite the long distance between us. Finally, I thank with love to my husband, Dr Gunawan, and my sons, James and Joaquin. Understanding me best as a physician himself, Gunawan has been my great companion, encouraged, entertained, and helped me get through this agonizing period in the most positive way. This work is dedicated to you.

Ad maiorem Dei gloriam.

PUBLICATIONS AND PRESENTATIONS

Manuscripts

1. Herwanto V, Nalos M, McLean AS, Tang B. Immune dysfunction in sepsis: diagnosis and treatment options. *ICU Management & Practice* 2018;18(1):40-43 (included in Chapter 1). *I co-wrote the drafts of the MS.*
2. Tang BM, Herwanto V, McLean AS. Immune paralysis in sepsis: recent insights and future development. In: *Annual Update in Intensive Care and Emergency Medicine* 2018. 2018. p. 13-23 (included in Chapter 1). *I wrote the drafts of the MS.*
3. Herwanto V, Shetty A, Nalos M, Chakraborty M, McLean A, Eslick GD, Tang B. Accuracy of quick Sequential Organ Failure Assessment score to predict sepsis mortality in 121 studies including 1,716,017 individuals: a systematic review and meta-analysis. *Critical Care Explorations* 2019;1:e0043 (refer to Appendix One). *I co-designed the study with BT, analysed the data and wrote the drafts of the MS.*
4. Herwanto V, Wang Y, Shojaei M, Khan A, Lai K, Shetty A, et al. Impaired peripheral blood mononuclear cell metabolism in patients at risk of developing sepsis: a cohort study. Submitted (included in Chapter 5). *I co-designed the study with YW, MS and BT, analysed the data and wrote the drafts of the MS.*

Posters and Presentations

1. Herwanto V, Wang Y, Shojaei M, Tang B, McLean AS. Reduced cellular respiration and ATP production in an in vitro model of sepsis. 38th International Symposium on Intensive Care and Emergency Medicine, Brussels, Belgium, March 2018. Poster presentation.
2. Herwanto V, Wang Y, Lai K, Shetty A, Shojaei M, Tang B, McLean AS, Booth DR. Metabolic profile of peripheral blood mononuclear cells in patients with low and high risk infections. Westmead Association Hospital Week Research Symposium, Westmead Hospital, Sydney, Australia, August 2018. Poster presentation.
3. Herwanto V, Wang Y, Shojaei M, Lai K, Shetty A, Tang B, McLean A, Booth DR. Metabolic profile of peripheral blood mononuclear cells in patients who are at risk of developing sepsis. The International Sepsis Forum's 12th Annual Symposium, Bangkok, Thailand, October 2018. Oral presentation, the Best International Abstract (refer to Appendix Two).
4. Herwanto V, Shetty A, Eslick GD, Tang B. Accuracy of qSOFA score to predict sepsis-related mortality in 99 studies consisting of 588,883 patients: a systematic review and meta-analysis. The International Sepsis Forum's 12th Annual Symposium, Bangkok, Thailand, October 2018. Poster presentation.

5. Herwanto V, Wang Y, Shojaei M, Shetty A, Lai K, Chew T, et al. Mitochondrial dysfunction and its related pathways in sepsis. Nepean Research Day, Sydney, Australia, September 2019. Oral presentation

6. Tang B, Wang Y, Herwanto V, Chew T. How to investigate host genomics in sepsis. Genomics, Sepsis & Intensive Care, Nepean Hospital, Sydney, Australia, October 2019. Oral presentation.

LIST OF ABBREVIATIONS

AAM	Alternatively activated macrophage
ADP	Adenosine diphosphate
APC	Antigen presenting cell
ATP	Adenosine triphosphate
Bcl-2	B-cell lymphoma 2
BSA	Bovine serum albumin
CAMs	Classically activated macrophage
CD	Cluster of differentiation
CI	Confidence interval
CRP	C-reactive protein
CTLA	Cytotoxic T lymphocyte-associated antigen
DC	Dendritic cell
DCFDA	2',7'-dichlorofluorescin diacetate
DEG	Differentially expressed gene
DMSO	Dimethyl sulfoxide
ECAR	Extracellular acidification rate
EDTA	Ethylenediaminetetraacetic acid
ETC	Electron transport chain
FBS	Foetal bovine serum
FCCP	Carbonyl cyanide-4 (trifluoromethoxy) phenylhydrazone
FDR	False discovery rate

GM-CSF	Granulocyte-macrophage colony-stimulating factor
GO	Gene ontology
HBSS/Ca/Mg	Hank's balanced salt solution supplemented with calcium and magnesium
HLA-DR	Human leukocyte antigen – DR isotype
ICU	Intensive care unit
IFN	Interferon
Ig	Immunoglobulin
IL-	Interleukin
IL-7R	Interleukin-7 receptor
LAG	Lymphocyte-activation gene
LPS	Lipopolysaccharide
MDSC	Myeloid-derived suppressor cell
MFI	Median fluorescence intensity
mRNA	Messenger ribonucleic acid
mROS	Mitochondrial reactive oxygen species
mTOR	Mammalian target of rapamycin
NETs	Neutrophil extracellular traps
NK cell	Natural killer cell
NO	Nitric oxide
OCR	Oxygen consumption rate
OXPHOS	Oxidative phosphorylation
PBMC	Peripheral blood mononuclear cell
PBS	Phosphate-buffered saline
PCA	Principal component analysis

PD-1	Programmed death-1
PD-L1/2	Programmed death ligand-1/2
PI	Propidium iodide
PICS	Persistent inflammation, immunosuppression and catabolic syndrome
PMN	Polymorphonuclear
QC	Quality control
RNA	Ribonucleic acid
RNA-Seq	RNA sequencing
RNS	Reactive nitrogen species
ROR γ t	Retinoic acid receptor-related orphan receptor- γ t
ROS	Reactive oxygen species
RPMI media	Roswell Park Memorial Institute media
SIRS	Systemic inflammatory response syndrome
SOFA score	Sequential organ failure assessment score
SRS	Sepsis response signature
T _H	T helper cell
T-bet	T-box transcription factor
Treg	Regulatory T cell
TLR	Toll-like receptor
TNF	Tumor necrosis factor
WGCNA	Weighted Gene Correlation Network Analysis

ABSTRACTS

Immune dysfunction is a major complication of sepsis. It increases susceptibility to nosocomial infection and contributes significantly to sepsis mortality. Immune dysfunction in sepsis has been associated with alterations in cellular metabolism which manifest as mitochondrial dysfunction and reduced cellular energy production. However, those alterations have been shown in established sepsis patients. Data are lacking in patients who are at early phase of infection who are yet to progress to sepsis. Our study aims to address this knowledge gap. Here, we present findings of a study that investigates metabolic alterations in the immune cells of infection patients. In particular, we compare the findings between those who develop sepsis with findings in those who did not develop sepsis (uncomplicated infection patients) to identify key pathologic mechanisms that underlie the progression from uncomplicated infection towards complicated infection (that is, sepsis).

First, in an *in vitro* model of sepsis, our preliminary experiment on peripheral blood mononuclear cells (PBMCs) indicated reduced mitochondrial respiration with increased intramitochondrial oxidative stress. Second, impaired mitochondrial respiration, with increased intramitochondrial oxidative stress, was observed in the PBMCs of patients with sepsis recruited from the emergency department. The level of oxidative stress significantly correlated with the severity of mitochondrial respiration impairment. Third, the findings of impaired mitochondrial respiration and increased intramitochondrial oxidative stress were also observed in patients with uncomplicated infection, albeit to a lesser intensity. Lastly,

further study on the PBMCs subsets, monocyte and T lymphocytes, corroborated the findings of metabolic alterations in sepsis as well as in uncomplicated infection patients.

Altogether, our study found that impaired mitochondrial respiration is detected in the immune cells of patients with uncomplicated infection, as it is in sepsis. Intramitochondrial oxidative stress is among several factors inducing the mitochondrial impairment, raising a possibility of its role as a potential target for preventing immune dysfunction.