

**Tarumanangara International Conference
on the Applications of Technology and Engineering 2020**

CERTIFICATE
OF ACHIEVEMENT

Prof. Dr. Ir. Agustinus Purna Irawan

for the contribution as

PRESENTER

Paper Title :

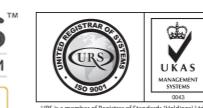
Design of simulation tools hybrid transmission mechanism

August 3rd - 4th, 2020 | Universitas Tarumanangara, Jakarta

Chairman

 CERTIFICATE
Chairman

Dr. Hugeng, S.T., M.T.



UNTAR
Universitas Tarumanagara

Accredited
by
BAN PT
(Excellent)

QS STARS™
RATING SYSTEM
2019 ★★★

Tarumanagara International Conference on the Applications of Technology and Engineering 2020

Universitas Tarumanagara, August 3rd - 4th, 2020

Keynote Speakers

1. Prof. Ir. Dr. Lee Sze Wei
(Tunku Abdul Rahman University College, Malaysia)
2. Prof. Dr. Ir. Tresna P. Soemardi, S.E., M.S.
(Universitas Indonesia, Indonesia)

Organizing Committee :

Chairman

Dr. Hugeng, Universitas Tarumanagara, Indonesia

Program

Dr. Francisca Iriani Roesmala Dewi, Universitas Tarumanagara, Indonesia.
Mei Ie, SE., M.M, Universitas Tarumanagara, Indonesia

Secretary

Bagus Mulyawan, M.M., Universitas Tarumanagara, Indonesia
Wulan Purnama Sari, M.Si., Universitas Tarumanagara, Indonesia

Proceeding & Scientific Session :

Dr. Hetty Karunia Tunjungsari, Universitas Tarumanagara, Indonesia
Sinta Peramita, SIP., M.A, Universitas Tarumanagara, Indonesia
Mariske Myeke Tampi, S.H., M.H, Universitas Tarumanagara, Indonesia

Treasure & Sponsorship

Wulan Purnama Sari, M.Si., Universitas Tarumanagara, Indonesia
Herlina Budiono SE., MM.,

Design & Publication

Maitri Widya Mutiara, S.Ds., M.M, Universitas Tarumanagara, Indonesia
A.R Johnsen, Universitas Tarumanagara, Indonesia

Call For Paper

Academicians, scientists, researchers, scholars, and students are invited to submit papers on topics which include, but are not limited to :

- Civil and Environmental Engineering
- Mechanical Engineering and Technology
- Electrical and Electronic Engineering
- Food and Agriculture Technology
- Materials Sciences and Engineering
- Informatic Engineering & Technologies
- Medical & Health Technology

Registration Fee

International Presenters	USD 180
Indonesian Presenters	IDR 2,000,000
Additional Paper	IDR 1,500,000
Participants	
International	USD 75
Indonesian	IDR 600,000
Student	IDR 400,000

Important Dates

Tarumanagara International Conference on the Applications of Technology and Engineering will be held in Campus I, Universitas Tarumanagara, Jakarta, Indonesia on August 3rd - 4th, 2020.

Full Paper Submission Deadline
Acceptance Notification
Camera Ready (with Payment)
Conference Date

June 30th, 2020
July 14th, 2020
July 21th, 2020
August 3rd-4th, 2020

Currently the entire world struggling the Pandemic Covid-19, we have the plan that the presentation method from the oral presentation to the virtual presentation / video meetings

Contact

Address : Jl. Let. Jend. S. Parman No.1 Jakarta
DKI Jakarta 11440 Indonesia
Contact No : +62156958751
+6281298022262 (Bagus M)
+62815-8433-6033 (Wulan)
+62817-752-003 (Hugeng)
Fax Numbers : +622156958738
Mail Us : ticate@untar.ac.id
Website : <http://ticate.untar.ac.id>

Organized by:

Supported by:

Indexed by:

PAPER • OPEN ACCESS

Preface

To cite this article: 2020 *IOP Conf. Ser.: Mater. Sci. Eng.* **1007** 011001

View the [article online](#) for updates and enhancements.

Preface

On behalf of the organizing committee of the 3rd TICATE 2020, I would like to welcome all delegates to attend this international conference with great pleasure. In the concern of COVID-19 pandemic, this international conference is being held virtually from August 3rd – 4th, 2020 from Campus I of Universitas Tarumanagara at Jl. Letjen S. Parman No. 1, Jakarta 11440, Indonesia. The 3rd TICATE 2020 is organized by Universitas Tarumanagara and technically sponsored by IOP Publishing. The reason why this conference was changed to virtual format is that due to COVID-19 Pandemic, there are travel restrictions and social distancing ruled by almost all governments in the world, including Indonesian government. We still hold partially the physical presentations regarding the healthy protocols suggested by World Health Organization.

Instead of being postponed, we still hold this international conference virtually using Zoom Meeting because this conference is a forum for engineers, academics, practitioners, and students to exchange their experiences and knowledge. Many innovations and developments are being created from the last event to this one. These need to be shared among stakeholders in the field of engineering and technology. Therefore, there is an urgent need to publish the newest results of researches in the conference proceedings.

The 3rd TICATE 2020 has attracted many academicians, scientists, engineers, postgraduates and other professionals from many countries. This conference accepted 217 papers from 5 different countries, those are Australia, Taiwan, India, Malaysia, and Indonesia. The aim of the conference is to promote exchange of ideas among engineers, researchers, and scientists active in the related areas of technology and engineering.

Our special thank goes to our Rector, Prof. Dr. Ir. Agustinus Purna Irawan, who has initiated this international conference, to our Plenary Speakers, Prof. Ir. Dr. Lee Sze Wei from Tunku Abdul Rahman University College, Malaysia, and Prof. Dr. Ir. Tresna P. Soemardi, S.E., M.S. from Universitas Indonesia, Indonesia, and to our Invited Speakers, Dr. Ayub Ahmed Janvekar from VIT University, Chennai, India and Prof. Ir. Dr. Mohd Zulkifli Abdullah from Universiti Sains Malaysia, Malaysia. Each keynote speaker will be given 30 minutes to hold his presentation and followed by 15 minutes Q&A session. At the parallel sessions, each presenter is given 15 minutes to present his/her work followed by 10 minutes Q&A session about the related topic. The parallel sessions are opened to all participants. The participants, including presenters at the parallel sessions, are attending this virtual international conference from Indonesia (Jakarta, Bandung, Medan, Yogyakarta, Aceh, Depok, Surabaya, etc.), Kuala Lumpur, Pulau Pinang (Malaysia), Australia, Taiwan, and India.

The virtual format of the 3rd TICATE 2020 still provides very satisfying overall technical quality of the conference, e.g. in presenting the articles. Because we used Zoom Meeting as the platform and a good internet connection to hold this virtual conference, the conference can be attended by about 500 participants from 5 countries without any problem.

We would like also to thank our partner international and national Universities in contributing and participating in this international conference. To all individuals and organizations such as the members of international editorial board, the conference organizers, the reviewers and the authors, for their contribution in making the 3rd TICATE 2020 as a successful international conference and a memorable gathering event. I am also grateful for the support of publication service of IOP Publishing.

Content from this work may be used under the terms of the [Creative Commons Attribution 3.0 licence](#). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

We hope that the conference could present you wonderful memories to bring home in addition to new insights and friendship congregated during the event. We truly value your participation and support for the conference. We hope that you will gather many experiences and benefits from this event.

Dr. Hugeng, S.T., M.T. (SMIEEE)

The 3rd TICATE 2020
Conference Organisation

INITIATOR & ORGANIZING INSTITUTION
 Universitas Tarumanagara, Jakarta

Supporting Institution
 IOP Publishing

Honorary Chair

Prof. Dr. Agustinus Purna Irawan
 R. M. Gatot Soemartono, Ph.D.

Chairman

Dr. Hugeng, S.T., M.T. (SMIEEE)

Secretary

Bagus Mulyawan, M.M.
 Wulan Purnama Sari, M.Si.

Program Chair

Dr. Fransisca Iriani Roesmala Dewi
 Mei Ie, S.E., M. M.

**Proceedings & Scientific
Session Chair**

Dr. Hetty Karunia Tunjungsari
 Sinta Paramita, SIP., M.A.

Mariske Myeke Tampi, S.H., M.H.

Treasurer & Sponsorship

Wulan Purnama Sari, M.Si.
 Herlina Budiono, S.E., M.M.

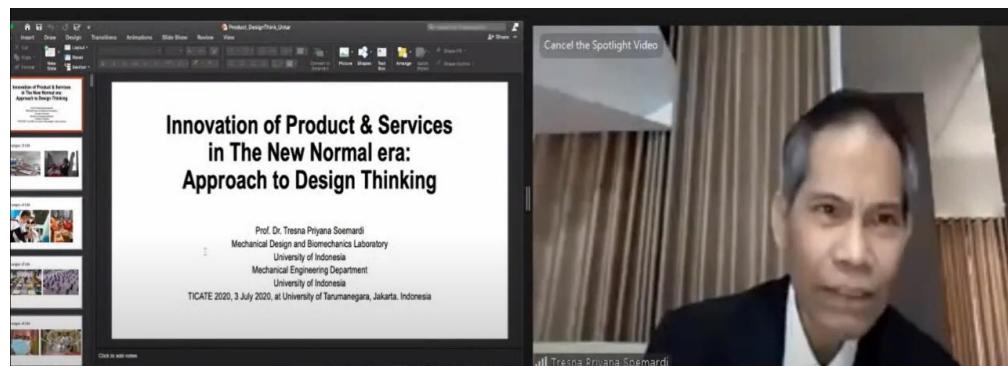
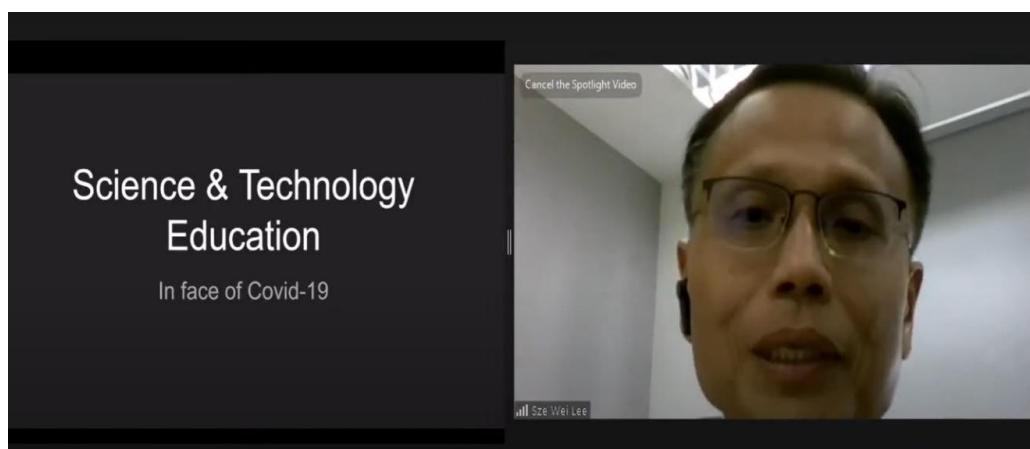
Design & Publication

Maitri Widya Muitara, S.Ds., M.M.
 A. R. Johnsen F.

Keynote Speakers

Prof. Ir. Dr. Lee Sze Wei, Tunku Abdul Rahman University College, Malaysia
 Prof. Dr. Ir. Tresna P. Soemardi, S.E., M.S., Universitas Indonesia, Indonesia

Invited Speakers



Prof. Ir. Dr. Mohd. Zulkifli Abdullah, Universiti Sains Malaysia, Malaysia
 Dr. Ayub Ahmed Janvekar, VIT University, Chennai, India

Editorial Board / Reviewers:

Prof. Dr. rer. nat. Alexander Ferrein, University of Applied Sciences Aachen, Germany
 Dr.-Ing. A. Ruggeri Toni Liang, Karlsruhe Institute of Technology, Germany
 Dr. -Ing Stephan Herzog, TU Kaiserslautern, Germany
 Dr. Thomas Marconi, Inside Secure, France
 Prof. Yifan Chen, Ph.D., University of Waikato, New Zealand
 Dr. Soh Sie Teng, Curtin University, Australia
 Dr. Channing Chuang, Kun Shan University, Taiwan
 Prof. Mohd Zulkifli bin Abdullah, Universiti Sains Malaysia, Malaysia
 Prof. Zaidi Mohd. Ripin, Universiti Sains Malaysia, Malaysia
 Dr. -Ing. Joewono Prasetyo, Universiti Tun Hussein Onn, Malaysia
 Dr. Filbert H. Juwono, Curtin University, Sarawak Malaysia
 Prof. Dr. Tresna P. Soemardi, Universitas Indonesia, Indonesia
 Dr. -Ing. Eko Adhi Setiawan, Universitas Indonesia, Indonesia
 Prof. Dr. Jamasri, Universitas Gadjah Mada, Indonesia
 Dr. Bambang Kismono Hadi, Bandung Institute of Technology, Indonesia
 Prof. Eko Sediyyono, Universitas Kristen Satya Wacana, Indonesia
 Prof. Tjokorda Gde Tirta Nindhia, Universitas Udayana, Indonesia
 Dr. Rianti Ariobimo, Universitas Trisakti, Indonesia

Dr. Richard Napitupulu, Universitas HKBP Nommensen, Indonesia
Prof. Dr. Dyah Erny Herwindiati, Universitas Tarumanagara, Indonesia
Prof. Dr. Leksmono Suryo Putranto, Universitas Tarumanagara, Indonesia
Harto Tanujaya, Ph.D., Universitas Tarumanagara, Indonesia
Jap Tji Beng, Ph.D., Universitas Tarumanagara, Indonesia
Lina, Ph.D., Universitas Tarumanagara, Indonesia
Dr. Steven Darmawan, Universitas Tarumanagara, Indonesia
Prof. Dr. Srikantappa A. S., Cauvery Institute of Technology, Mandya, India
Prof. Yasuyuki Nemoto, Ph.D., Ashikaga University, Japan

PAPER • OPEN ACCESS

Design of simulation tools hybrid transmission mechanism

To cite this article: William Kurnia *et al* 2020 *IOP Conf. Ser.: Mater. Sci. Eng.* **1007** 012166

View the [article online](#) for updates and enhancements.

Design of simulation tools hybrid transmission mechanism

William Kurnia^{1*}, Agus Halim^{1**}, Agustinus Purna Irawan^{1***}

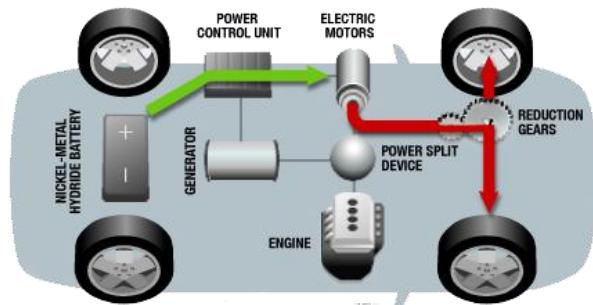
¹Faculty of Engineering, Universitas Tarumanagara, Indonesia

* william.515160013@stu.untar.ac.id

** agush@ft.untar.ac.id

*** agustinus@untar.ac.id

Abstract. Simulation tool is a learning facility that presents learning experiences using artificial situations or system models so that one can understand certain concepts. This design aims to create a simulation tool as a learning media for planetary gear mechanisms in hybrid transmission systems. The method used in the design uses the reverse engineering method which is focused on the mechanism of the planetary gear, so that it can be made into a simulation tool. The planetary gear component design are based on data from Toyota Prius reference system using a torque ratio, with planning power of 15 kW and a rotation of 300 r/min. The planetary gear system consists of a sun gear with a diameter of 75 mm and 25 pieces of teeth, a planetary gear with a diameter of 54 mm and 17 pieces of teeth, and a ring gear with a diameter of 18 mm and 60 pieces of teeth. The result of design shows that the hybrid transmission simulation tool mechanism can function well as a learning medium with variations of 3 outputs. **Keywords:** Design, hybrid transmission mechanism, simulation tool.


1. Introduction

The increasing needs of Indonesian people are very significant, especially in the transportation sector. Increased demand in terms of transportation also raises a problem of fuel consumption and other aspects that affect environmental conditions. In dealing with these problems, knowledge about hybrid transmission will be needed to be developed in order to overcome the problems as well as increasing needs in the transportation sector. Some important components that will be discussed are how to design a simple simulation tool mechanism about hybrid transmission in order to understand and maximize problem solving from all aspects needed. These designs would focus on hybrid transmission simulation tools and the design of mechanisms is using planetary gear as the center of the hybrid transmission system. One of the important things that must be considered regarding the design of this hybrid transmission simulation tool is the mechanism on the planetary gear that will be used as the center of the mechanism system, starting from the design of the gears, the amount of gears on the gear wheel are being used, and the resulting output [1-2].

2. Method

Method used in the design is reverse engineering method, done by following the procedure below:

- a) Clarifying the planetary gear mechanism system
- b) Simulation tools will focus on hybrid transmission that aims as learning material
- c) Pick the material used in the planetary gear
- d) Adjust design specifications of the simulation tools
- e) Create a simulation tools and 3D model for animation

Figure 1. Hybrid Transmission Systems [3]

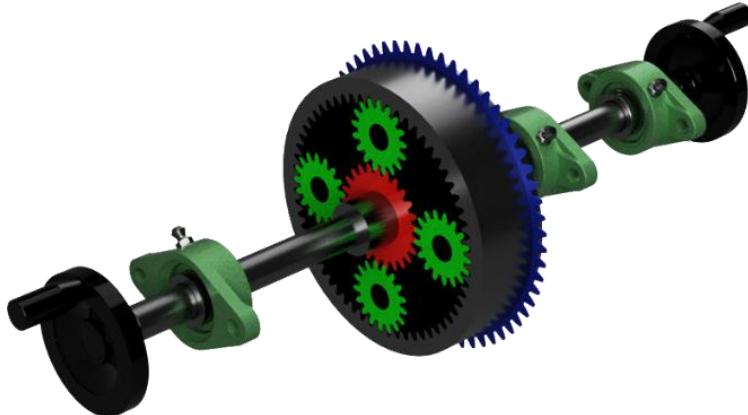
3. Result and Discussion

The configuration of the mechanism system of the planetary gear has a 1: 4 model comparison based on reference to the drivetrain Toyota Prius system. The planetary gear system used are composed of sun gear, planet carrier and ring gear. To determine the dimensions of the gear, it can be assumed the power ratio assumption, so that the ratio results from planetary gear will be obtained [4-6].

The planetary gear ratio is done with a 1: 4 model comparison based on torque at 1000 r/min rotation speed assuming the inertia of the gear mass is ignored. In order to simplify and determine the ratio based on a 1: 4 model comparison that suitable to the function, so it is assumed to use a hybrid parallel mode where the total torque generated is 31.77 Nm in which a list is made which is shown in Table 1.

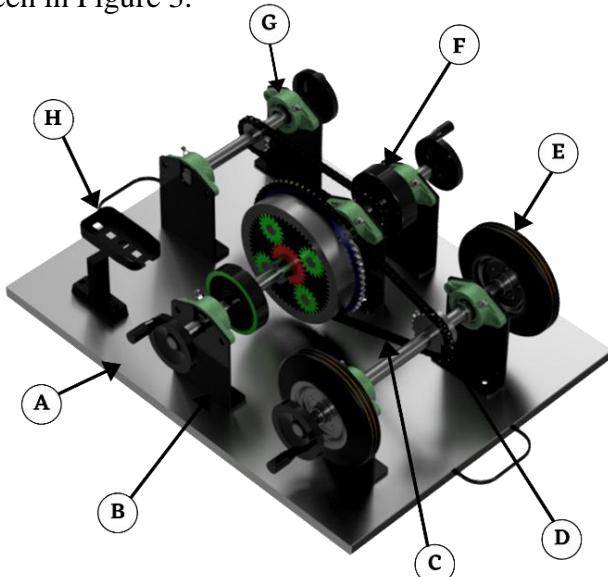
Table 1. Determination of Planetary Gear Set Ratio and Gear Pitch Radius

Gas Engine Torque (Nm)	Electrical Motor Torque (Nm)	Ratio Planetary Gear	Radius Sun Gear (Assumption) (mm)	Radius Ring Gear (mm)	Radius Planet Gear (mm)
17.44	14.33	4.6	40	184.6	72.3
17.84	13.93	3.6	40	142.6	51.3
18.24	13.53	2.9	40	114.9	37.4
18.64	13.13	2.4	40	95.3	27.6
19.04	12.73	2.0	40	80.6	20.3


The ratio that is suitable with the function when looking at the list in table 2 is the ratio of 2.4. If it is assumed that the gear module is 3, then the number of gears of sun gear, ring gear and planet gear in sequence are 26 pieces, 63 pieces, 18 pieces [7-8].

Deflection that occurs in gears using materials S45C can be calculated with gears of 5mm width and height of 5.3 mm with elongation of materials 200 GPa, can be seen at Table 2 [9-10].

Table 2. Deflections on Spur Gears Planetary Gear


Components	Simulation Results		Deflection
Sun Gear			$\frac{16 \times 12,715.4N \times 5^3}{200,000MPa \times 50.63mm \times 5.3^3}$ $Deflection = 0.017mm$
Planet Gear			$\frac{16 \times 7,665.17N \times 5^3}{200,000MPa \times 50.63mm \times 5.3^3}$ $Deflection = 0.010mm$
Ring Gear			$\frac{16 \times 12,715.4N \times 5^3}{200,000MPa \times 50.63mm \times 5.3^3}$ $Deflection = 0.017mm$

Based on the calculation results, the specifications of the design of the hybrid transmission simulation tool mechanism can be illustrated as Figure 2 and details output at Table 3.

Figure 2. Planetary Gear Set Design Illustration**Table 3.** Output Specifications of Simulation Tool Design

Maximum Power	Torque @300 r/min	Planetary Gear Ratio	Drive System
15 kW	47.8 Nm	2.4	Handwheel

The mechanism used in this planetary gear system is manual, so it will be rotated by the handwheel. Overall design of the design of the hybrid transmission simulation tool mechanism as can be seen in Figure 3.

Figure 3. Design of Simulation Tools Hybrid Transmission Mechanism Illustrations

- A. Simulation Field : used for placing other parts
- B. Support Plate : used for keeping the planetary gear in place
- C. Roller Chain : part of the transmission systems
- D. Sprocket : used for transmit the power from roller chain transmission
- E. Wheel : used for simulation wheel
- F. Model Simulation Engine/Generator : used for simulation engine/generator
- G. Bearing : support for keeping all the shafts in place
- H. Tachometer Holder : used for holder of sensor tachometer to aim at the wheel

The test results of the design of simulation tool hybrid transmission mechanism that will be carried out, based on the power planning 15 kW with a rotation of 300 r/min, include 3 outputs produced, moreover the test results obtained can be seen in Table 4 [11-14].

Table 4. Design of Simulation Tools Hybrid Transmission Mechanism Test Result

Sun Gear	Planet Carrier	Ring Gear	Velocity	Torque	Rotational Direction
Hold with Inverse Input	Input (96 r/min)	Detained	534 r/min ↑	Decrease ↓	Same as Input
If two members parts are held together, speed and direction are the same as power input. 1: 1 movement immediately occurs.					
If no members parts are detained or locked together, the output does not occur. The result is a Neutral condition.					

4. Conclusion

The results of the design of simulation tools hybrid transmission mechanism, it can be concluded that the design of simulation tools hybrid transmission mechanism in accordance with the design objectives, as a learning medium to add insight into the hybrid transmission system and planetary gear mechanism that capable to work well to produce 3 variations of output.

5. References

- [1] Yamin, M., N., A. D. Sapto, 2014 *Indonesian Statistical Analysis Conference* 206
- [2] Irawan, A.P., Utama, D.W., Affandi, E., Suteja, H., 2019 *IOP Conference Series: Materials Science and Engineering* **508**-1-012054
- [3] *Hybrid Electric Vehicle* [Online], Available: <http://www.global-greenhouse-warming.com/hybrid-electric-vehicle.html>. [Accessed 11 Februari 2020]
- [4] A. Oktav, A., 2017 *Researches on Science and Art in 21st Century Turkey* 2976-2978.
- [5] Hofman, T., R. v. Dreuten, A. Serrarens, v. Baalen, 2001 *Innovational Researches Incentives* **1**-1-12
- [6] Burress, T. A., S. L. Campbell, C. W. Ayers, A. A. Wereszczak, C. L. Coomer, J. P. Cunningham, 2011 *Oak Ridge National Laboratory* 3-6
- [7] Montazeri, M., M. Mahmoodi, 2015 *Transportation Research Part D: Transport and Environment* **37**-79-96
- [8] Anwar, M., D. Yuliaji, G. E. Pramono, 2019 *Jurnal Ilmiah Teknik Mesin* **5**-2-88
- [9] Singh, J., M. R. Tyagi, 2017 *International Journal of Mechanical Engineering and Technology (IJMET)* **8**-4-461
- [10] Irawan, A.P., 2016 *Perancangan Sistem Transmisi Roda Gigi* (Yogyakarta: Kanisius)
- [11] Sularso, K. Suga, 1997, *Dasar Perencanaan dan Pemilihan Elemen Mesin* (Jakarta: Pradnya Paramita)
- [12] Khurmi, R.S., J. K. Gupta, 2005, *A Textbook of Machine Design* (New Delhi: Eurasia Publishing House (Pvt.) Ltd.)
- [13] Marizar, E.S., Irawan, A.P., Beng, J.T., 2019 *IOP Conference Series: Materials Science and Engineering* **508**-1-012104
- [14] Renaldo, Irawan, A.P., Halim, A., 2019 *IOP Conference Series: Materials Science and Engineering* **508**-1-012073

Source details

IOP Conference Series: Materials Science and Engineering

CiteScore 2020
0.7 [i](#)

Scopus coverage years: from 2009 to Present

ISSN: 1757-8981 E-ISSN: 1757-899X

Subject area: [Engineering: General Engineering](#) [Materials Science: General Materials Science](#)

SJR 2019
0.198 [i](#)

Source type: Conference Proceeding

[View all documents >](#)[Set document alert](#)[Save to source list](#) [Source Homepage](#)

SNIP 2020
0.484 [i](#)

[CiteScore](#) [CiteScore rank & trend](#) [Scopus content coverage](#)

[i](#) Improved CiteScore methodology [x](#)

CiteScore 2020 counts the citations received in 2017-2020 to articles, reviews, conference papers, book chapters and data papers published in 2017-2020, and divides this by the number of publications published in 2017-2020. [Learn more >](#)

CiteScore 2020 [▼](#)

0.7 =
$$\frac{49,696 \text{ Citations 2017 - 2020}}{68,224 \text{ Documents 2017 - 2020}}$$

Calculated on 05 May, 2021

CiteScoreTracker 2021 [i](#)

0.7 =
$$\frac{44,231 \text{ Citations to date}}{62,141 \text{ Documents to date}}$$

Last updated on 04 June, 2021 • Updated monthly

CiteScore rank 2020 [i](#)

Category	Rank	Percentile
Engineering		
General Engineering	#228/297	23rd
Materials Science		
General Materials Science	#381/455	16th

[View CiteScore methodology >](#) [CiteScore FAQ >](#) [Add CiteScore to your site >](#)

About Scopus

- [What is Scopus](#)
- [Content coverage](#)
- [Scopus blog](#)
- [Scopus API](#)
- [Privacy matters](#)

Language

- [日本語に切り替える](#)
- [切换到简体中文](#)
- [切換到繁體中文](#)
- [Русский язык](#)

Customer Service

- [Help](#)
- [Contact us](#)