

CERTIFICATE

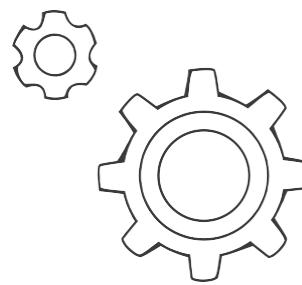
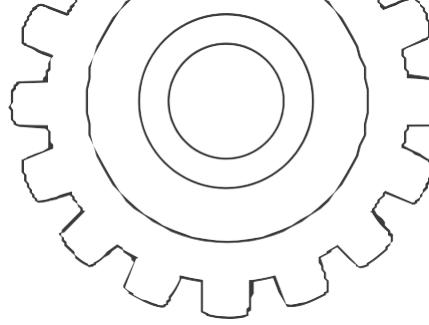
OF ACHIEVEMENT

this certificate is presented to

Prof.Dr.Ir. Agustinus Purna Irawan

for the contribution as

PRESENTER



Paper Title: Hydraulic analysis of drinking water pipeline inter Island

November 22nd -23rd, 2018 | Universitas Tarumanagara, Jakarta

Chairman

Dr. Hugeng, S.T., M.T.

"The Implementation of Research Results and Innovation for People's Prosperity"

November 22nd - 23rd, 2018

Keynote Speakers

1. Prof. Dr. rer. nat. Alexander Ferrein
(University of Applied Sciences Aachen, Germany)
2. Prof. Mohd. Zulkifly b. Abdullah
(University Sains Malaysia, Malaysia)
3. Dr. Ir. Yono Reksoprodjo, DIC
(VP Corporate Affairs Sintesa Group)

Committees

Honorary Chair :

Prof. Agustinus Purna Irawan, Rector of Universitas Tarumanagara, Indonesia
R. M. Gatot Soemartono, Ph.D, Vice Rector of Universitas Tarumanagara, Indonesia

Editorial Board :

Prof. Alexander Ferrein, University of Applied Sciences Aachen, Germany
Dr. -Ing. A. Rugeri Toni L., Karlsruhe Institute of Technology, Germany
Dr. -Ing Stephan Herzog, TU Kaiserslautern, Germany
Dr. Thomas Marconi, Inside Secure, Netherlands
Prof. Yifan Chen, University of Waikato, New Zealand
Dr. Soh Sie Teng, Curtin University, Australia
Dr. Channing Chuang, Kun Shan University, Taiwan
Prof. Muhammad Zulkifli Bin Abdullah, Universiti Sains Malaysia, Malaysia
Prof. Zaidi M. Ripin, Universiti Sains Malaysia, Malaysia
Dr. -Ing. Joeowono Prasetyo, Universiti Tun Hussein Onn, Malaysia
Dr. Gilbert H Juwono, Curtin University, Sarawak Malaysia
Prof. Tresna P. Soemardi, Universitas Indonesia, Indonesia
Dr. -Ing. Eko Adhi Setiawan, Universitas Indonesia, Indonesia
Prof. Jamasri, Universitas Gadjah Mada, Indonesia
Dr. Bambang Kismono, Bandung Institute of Technology, Indonesia
Prof. Eko Sediyo, Universitas Kristen Satya Wacana, Indonesia
Prof. Tjokorda Gde Tirta Nindha, Universitas Udayana, Indonesia
Dr. Rianti Ariobimo, Universitas Trisakti, Indonesia
Dr. Richard Napitupulu, Universitas HKBP Nommensen, Indonesia
Prof. Dyah Erry Herwindati, Universitas Tarumanagara, Indonesia
Prof. Leksono Suryo Putranto, Universitas Tarumanagara, Indonesia
Harto Tanujaya, Ph.D., Universitas Tarumanagara, Indonesia
Jap Tji Beng, Ph.D., Universitas Tarumanagara, Indonesia
Lina, Ph.D., Universitas Tarumanagara, Indonesia
Dr. Steven Darmawan, Universitas Tarumanagara, Indonesia

Organizing Committee :

Chairman : Dr. Hugeng, Universitas Tarumanagara, Indonesia
Co-Chairman : Dr. Franstica Iriani Roesmala Dewi, Universitas Tarumanagara, Indonesia
Secretary : Bagus Mulyawan, M.M., Universitas Tarumanagara, Indonesia
Parallel & Scientific Session : Dr. Hetty Karunia Tunjungsari, Universitas Tarumanagara, Indonesia
Treasure : Wulan Purnama Sari, M.Si., Universitas Tarumanagara, Indonesia

Contact

Address : Jl. Let. Jend. S. Parman No.1 Jakarta
DKI Jakarta 11440 Indonesia
Contact No : +62 817-752-003 (Hugeng)
+62 8129-8022-262 (Bagus)
Fax Numbers : +62 2156958738
Mail Us : ticate@untar.ac.id
Website : <http://ticate.untar.ac.id>

Call For Paper

Academicians, scientists, researchers, scholars, and students are invited to submit papers on topics which include, but are not limited to :

- Mechanical Engineering and Technology
- Electrical Engineering
- Industrial Engineering
- Civil and Environmental Engineering
- Food and Agriculture Technology
- Informatic Engineering & Technologies
- Medical & Health Technology

Registration Fee

International Presenters	USD 135
Indonesian Presenters	IDR 1,500,000

Participants

International	USD 75
Indonesian	IDR 500,000
Student	IDR 300,000

Important Dates

Tarumanagara International Conference on the Applications of Technology and Engineering will be held in Campus I, Universitas Tarumanagara, Jakarta, Indonesia on November 22nd - 23rd, 2018.

Full Paper Submission Deadline
Acceptance Notification
Camera Ready (with Payment)
Conference Date

October 17th, 2018
October 24th, 2018
October 31st, 2018
November 22nd - 23rd, 2018

Submission

Submitted conference papers will be reviewed by technical committees of the Conference. Completed papers (PDF format) should be submitted to [easychair](http://easychair.org) system or by email ticate@untar.ac.id before the deadline.

By submitting a paper an author and all co-authors are assumed to agree with the terms of the Proceedings licence.

We look forward to receiving your papers and to welcoming you to the TICATE 2018, Universitas Tarumanagara, Jakarta, Indonesia.

Organized by:

Sponsored by:

Indexed by:

PAPER • OPEN ACCESS

Tarumanagara International Conference on the Applications of Technology and Engineering

To cite this article: 2019 *IOP Conf. Ser.: Mater. Sci. Eng.* **508** 011001

View the [article online](#) for updates and enhancements.

1st Tarumanagara International Conference on the Applications of Technology and Engineering 2018

Preface

On behalf of the organising committee of 1st Tarumanagara International Conference on the Applications of Technology and Engineering (TICATE) 2018, I would like to welcome all delegates to the Campus of Universitas Tarumanagara (UNTAR) in Jakarta, Indonesia with great pleasure. Being held from November 22 to 23, 2018 the international conference is organized by UNTAR and technically sponsored by IOP Conference Series: Materials Science and Engineering (MSE).

Universities play an important role in facing the rapid development of technology and engineering in recent digital era. The rapid developments of technology and engineering impact various aspects of people's life in welcoming the era of Industry 4.0. The biggest challenge faced by universities due to these rapid developments is how the results of research and technological innovation can contribute to the people's prosperity. As a form of contribution from universities in responding this challenge, Universitas Tarumanagara hold the 1st TICATE 2018 with the theme of: "The Implementation of Research Results and Innovation for People's Prosperity".

This international conference activity is expected to be a forum of discussion, networking and exchanging ideas among researchers, academicians, and practitioners to work together to pursue research and technological innovation that can be used to contribute to people's prosperity.

Over 160 papers have been submitted to 1st TICATE 2018 from 6 different countries, those are Germany, France, Australia, Taiwan, Malaysia, and Indonesia. We categorized the papers under seven groups, namely Mechanical Engineering and Technology; Electrical Engineering; Industrial Engineering; Civil and Environmental Engineering; Food and Agriculture Technology; Informatic Engineering & Technologies; and Medical & Health Technology. All papers, regardless of their standing or initial classification, were available for general discussion at the committee's meeting.

Our special thank goes to our Rector, Prof. Dr. Agustinus Purna Irawan, who has initiated this conference, Dr. Svann Langguth as Head of Science and Technology Division from the Embassy of the Federal Republic of Germany in Jakarta, Prof. Dr. Mohd. Zulkifly bin Abdullah as Professor from Universiti Sains Malaysia, and Dr. Ir. Yono Reksoprodjo, DIC as Vice President Corporate Affairs of Sintesa Group, as our plenary speakers and Bank DKI, Bank Mandiri, Tarzan Photo, Hyperzone Computer, as our patrons. I would like to give special thanks to all of you for the interesting keynote speech at this international conference.

We also thank all individuals and organisations such as the members of international editorial board, the conference organisers, the reviewers, and the authors, for their contribution in making TICATE 2018 as a successful international conference and a memorable gathering event. I am also grateful for the support of publication service of IOP Conference Series: Materials Science and Engineering (MSE).

We hope that the conference could present you wonderful memories to bring home in addition to new insights and friendship congregated during the event. We truly value your participation and support for the conference. We hope that you will enjoy TICATE 2018 and Betawi culture and tradition in Jakarta.

Dr. Hugeng, S.T., M.T. (SMIEEE)

Content from this work may be used under the terms of the [Creative Commons Attribution 3.0 licence](#). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

1st TICATE 2018
Conference Organisation

INITIATOR & ORGANIZING INSTITUTION

Universitas Tarumanagara, Jakarta

Supporting Institution

Bank DKI, Bank Mandiri, Tarzan Photo, and Hyperzone Computer

Honorary Chair

Prof. Agustinus Purna Irawan
 R. M. Gatot Soemartono, Ph.D.

Chairman

Dr. Hugeng, S.T., M.T. (SMIEEE)

Co-chairperson

Dr. Fransisca Iriani Roesmala Dewi

Secretary

Bagus Mulyawan, M.M.

Parallel & Scientific Session

Dr. Hetty Karunia Tunjungsari

Treasurer

Wulan Purnama Sari, M.Si.

Keynote Speakers

Dr. Svann Langguth, Embassy of Germany in Indonesia
 Prof. Dr. Mohd. Zulkifly bin Abdullah, USM, Malaysia
 Dr. Ir. Yono Reksoprodjo, DIC, Sintesa Group, Indonesia

Editorial Board / Reviewers:

Prof. Dr. rer. nat. Alexander Ferrein, University of Applied Sciences Aachen, Germany
 Dr.-Ing. A. Ruggeri Toni Liang, Karlsruhe Institute of Technology, Germany
 Dr. -Ing Stephan Herzog, TU Kaiserslautern, Germany
 Dr. Thomas Marconi, Inside Secure, France
 Prof. Yifan Chen, University of Waikato, New Zealand
 Dr. Soh Sie Teng , Curtin University, Australia
 Dr. Channing, Kun Shan Univeristy, Taiwan
 Prof. Mohd Zulkifli bin Abdullah, Universiti Sains Malaysia, Malaysia
 Prof. Zaidi Mohd. Ripin, Universiti Sains Malaysia, Malaysia
 Dr. -Ing. Joewono Prasetyo, Universiti Tun Hussein Onn, Malaysia
 Dr. Filbert H. Juwono, Curtin University, Sarawak Malaysia
 Prof. Tresna P. Soemardi, Universitas Indonesia, Indonesia
 Dr. -Ing. Eko Adhi Setiawan, Universitas Indonesia, Indonesia
 Prof. Jamasri, Universitas Gadjah Mada, Indonesia
 Dr. Bambang Kismono Hadi, Bandung Institute of Technology, Indonesia
 Prof. Eko Sediyono, Universitas Kristen Satya Wacana, Indonesia
 Prof. Tjokorda Gde Tirta Nindhia, Universitas Udayana, Indonesia
 Dr. Rianti Ariobimo, Universitas Trisakti, Indonesia
 Dr. Richard Napitupulu, Universitas HKBP Nommensen, Indonesia
 Prof. Dyah Erny Herwindiati, Universitas Tarumanagara, Indonesia
 Prof. Leksmono Suryo Putranto, Universitas Tarumanagara, Indonesia
 Harto Tanujaya, Ph.D., Universitas Tarumanagara, Indonesia
 Jap Tji Beng, Ph.D., Universitas Tarumanagara, Indonesia
 Lina, Ph.D., Universitas Tarumanagara, Indonesia
 Dr. Steven Darmawan, Universitas Tarumanagara, Indonesia

PAPER • OPEN ACCESS

Hydraulic analisys of drinking water pipeline inter island

To cite this article: Tri Suyono *et al* 2019 *IOP Conf. Ser.: Mater. Sci. Eng.* **508** 012035

View the [article online](#) for updates and enhancements.

Hydraulic analisys of drinking water pipeline inter island

Tri Suyono^{1*}, Wati Asriningsih Pranoto², Agustinus Purna Irawan²

¹Doctoral Civil Engineering Universitas Tarumanagara and Faculty of Engineering Universitas Khairun

²Faculty of Engineering Universitas Tarumanagara

* tri_suyono78@yahoo.com

Abstract. One important study is the hydraulic study of water flow in the pipeline so that it can provide technical certainty that the water distributed to the destination island is in accordance with the plan to meet the drinking water needs of the island until the projected year between 15-30 years. This study used as a reference for selecting pipe specifications that are in accordance with the workload, so that the pipe is not damaged when the system is operated. Hydraulic analysis performed using Epanet 2.0 software with preferred output analysis is the flow velocity, pressure and capacity of water coming out of the pipe. In the hydraulic study of the underwater drinking water pipeline from Tidore Island to Maitara Island, the maximum pressure that works on the sea-based pipeline is obtained, the minimum speed up to the maximum water in the pipeline and the water capacity entering the Maitara island reservoir is 17.20 bar, 0. 4 - 2.26 L/s and 25.82 L/s. Considering the results of these calculations, the pipe specifications were selected with a 110 mm PN diameter High Dencity Polyethelin (HDPE) pipe with 20 lined three lane lines, with technical considerations of installation and operation and maintenance. The system, this pipeline can meet the drinking water needs of Maitara Island both domestic and non-domestic until the projected year of 2040 is 22.7 L/s. **Keywords:** Hydraulic, pipeline, drinking water

1. Introduction

Some uninhabited islands in Indonesia do not have the potential of raw water for drinking water, so that local people currently rely on rainwater to meet their drinking water needs, while in the long dry season local residents take water from nearby islands. The development of drinking water pipelines between islands is one solution to meet drinking water needs, islands that do not have the potential for raw water for drinking water. In the design of inter-island drinking water pipelines one of the main factors that must be studied is hydraulic analysis [1]. The need for hydraulic analysis is to get the confidence that the water flowed to the destination island is able to meet the expected needs and technical aspects. Some technical aspects that are needed are capacity, pressure and speed. These three factors are very important because to find out the level of security of the pipe that is high from the influence of pressure in the pipe. The capacity of the water flowing to the destination island must be in accordance with the needs, and the pressure in the pipe must not exceed the capacity of the pipe, as well as the flow velocity is not less than 0.3 m/s and 2.5 m/s. If the hydraulic studies have been carried out by producing study results that are in accordance with the criteria of planning that are carried out carefully and carefully, then after the construction of the completed pipeline will not cause severe technical problems [2]. Hydraulic analysis also functions to get pipe specifications and accessories, so that the pipes and accessories are not damaged when and after the system is operated [3], [4].

Content from this work may be used under the terms of the [Creative Commons Attribution 3.0 licence](#). Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Inter-island drinking water pipelines with subsea pipelines are strongly influenced by the depth of the sea and the distance between islands, water conditions and the condition of the seabed. Contour conditions in the sea tend to be uneven, this will result in a lot of pressure flow losses in the pipe, as well as friction in the flow in the pipe, the longer the pipe, the greater the friction value [5], [6], [7]. The high value of friction in the pipe will reduce the water pressure in the output section. For this reason, this study needs to be done carefully by selecting the appropriate pipe size. This study was carried out on the underwater drinking water pipeline from Tidore Island to Maitara Island along 1,600 m with an average depth of 42 m below sea level.

2. Pipeline

Provision of drinking water in Maitara Island, North Maluku is carried out with an inter-island underwater drinking water pipeline system by extracting water from bore wells in Fobaharu village, Tidore Island, drilling wells having a depth of 100 m below ground level and installing pumps at a depth of 60 m below ground level, then the water is flowed into the reservoir and then distributed by gravity to Maitara island [8], [9] [10]. The wellbore elevation is 132 m above sea level and the reservoir elevation is at an elevation of 146 m above sea level, which is channeled to the Maitara island by gravity by passing the sea which has an average depth of 42 m below sea level and water is fed into the reservoir on Maitara Island which is at an elevation of 52 m above sea level, and then distributed to community settlements which are at an elevation between 2 - 34 m above sea level, with the distance to the farthest settlement is 5.8 km so that the distribution can be done with a gravity system. Schematic of the drinking water pipeline system from Tidore Island to Maitara Island as shown in Figure 1.

Figure 1. Schematic of the pipeline of Tidore Island to Maitara Island

3. Analysis Method

Hydraulic analysis is done using Software Epanet 2.0 using the following equation:

- a. HARDY CROSS method

Some equations used:

- Mass Balance Equation [11]

$$Q_{in} = Q_{out}$$

Continuity Equation [1]

$$\begin{aligned} Q &= V \cdot A \\ &= V \cdot (\frac{1}{4} \cdot \pi \cdot D^2) \end{aligned}$$

$$A_1 \cdot V_1 = A_2 \cdot V_2$$

Where:

Q	: flow rate	(m ³ /s)
D	: pipe diameter	(m)
A ₁	: initial cross-sectional area	(m ²)
A ₂	: final cross-sectional area	(m ²)
V ₁	: initial flow speed	(m/s)
V ₂	: final flow speed	(m/s)

- Hazen Williams Equation [12]

$$H_f = \left\{ \frac{Q}{0.2785 * C * D^{2.63}} \right\}^{1.85} * L$$

Where:

L	: pipe length	(m)
H _f	: head loss / major head along a straight pipe	(m)
D	: pipe diameter	(m)
Q	: flow rate	(L/s)
C	: Hazen Williams coefficient (the amount depends on the type of pipe used)	

- Debit Correction (ΔQ) [13]

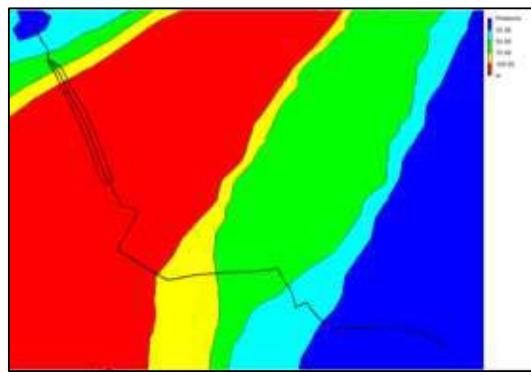
$$\Delta Q = - \left\{ \frac{\Sigma H_f}{1.85 \times \Sigma (H_f / Q)} \right\}$$

- Check debit [14]

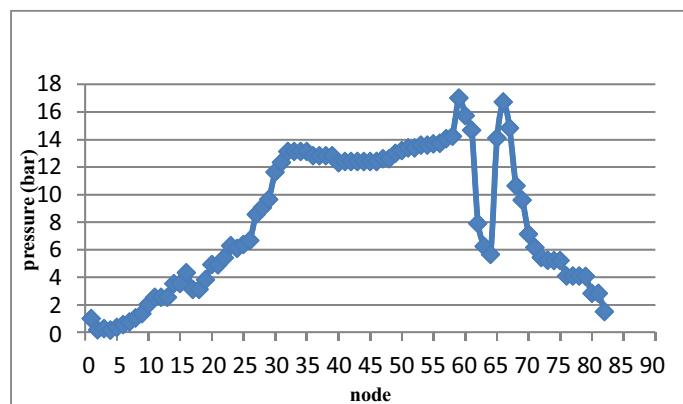
$$Q = Q_a - \Delta Q$$

Where:

Q	: actual debit
Q _a	: assumption debit
ΔQ	: debit correction


The calculation method is:

- Assume the direction, discharge, and diameter of the pipe in the system, with the amount entering the same amount of discharge coming out with the flow velocity in the pipe ranging from 0.3 - 2.5 m / s.
- Calculate the headloss of each loop based on the assumption debit by observing the direction of flow (if clockwise (positive), if counterclockwise - (negative)).
- Calculate the number of H_f/Q atau $k \times Q^{0.25}$ values regardless of the sign.
- Calculate the correction discharge, and correct each loop.
- Repeat the above procedure for each loop, to obtain the smallest possible discharge correction (near zero) [15].


4. Results and discussion

Selection of pipe specifications based on hydraulic studies on the underwater drinking water pipeline will also determine several other technical aspects, including the determination of pipe

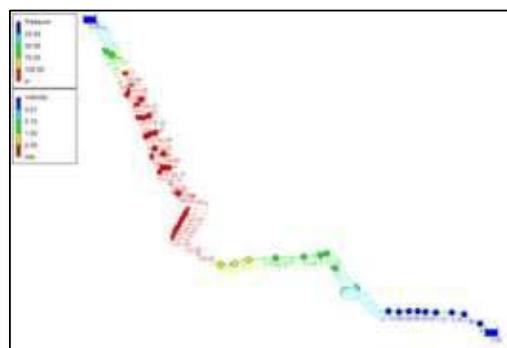

weight concrete which includes weight, size, installation distance and quality of concrete. In addition, it will also affect the dimensions and type of towing rope, specifications for pipe pulling pipes and pipe ballast mounting pipes. Knowing the hydraulic conditions of the flow in this pipe is the basis of other technical calculations [16], [17], [18]. Analysis carried out with Epanet 2.0 on the underwater drinking water pipeline from Tidore Island to Maitara Island with a distance of 1,600 m as shown in figure 2, 3 and 4 obtained a maximum pressure of 17.20 bar, flow velocity between 0.4 - 2, 26 m/s and the capacity of water entering the Maitara Reservoir is 25.82 L/s. The highest pressure occurred in the pipeline at the deepest sea level at a depth of 68 m.usl of 17.20 bar. Taking into account the results of the analysis, the use of HDPE PN pipe type 20 bars outer diameter 110 mm with a thickness of 2.2 cm are in accordance with technical criteria.

Figure 2. Contour Plot Pressure of drinking water pipeline from Tidore Island to Maitara Island

Figure 3. Chart of Pressure of drinking water pipeline from Tidore Island to Maitara Island

Figure 4. Map of pressure and velocity of drinking water pipeline from Tidore Island to Maitara Island

Figure 5. Documentation of drinking water pipeline from Tidore Island to Maitara Island

5. Conclusion

Hydraulic study is a basic study in the technical calculation of underwater drinking water pipelines, and is a reference of all technical calculations. The inter-island drinking water pipeline system installed on the very seabed from Tidore Island to Maitara Island based on hydraulic studies using software Epanet 2.0 is very suitable when using HDPE type pipes with 20 bars Pressure Nominal specifications with 110 mm diameter and 3 lanes pipes that are installed in a row with a certain distance follow the condition of the seabed. Water capacity that can be distributed at 25.82 L/s can meet the needs of the community on the island of Maitara in the 2010 projected year of 22.7 L/s and maximum water pressure at the deepest sea point of 17.20 bars.

6. References

- [1] Brennan, M. K., Karimi, M., Almeida, F. C. L., Almeida, F. C. L., de Lima, F. K., Ayala, P. C., Obata, D., Paschoalini, A. T., Kessissoglou, N. 2018 *Journal of Sound and Vibration* 427: 120-133.
- [2] Dey, S., Singh, N. P. 2007 *Journal of Hydro-environment Research* 1:157-162.
- [3] Li, X., Chen, G., Zhang, R., Zhu, H., Fu, J. 2018 *Process Safety and Environmental Protection* 19: 46-57.
- [4] Rizzini, D. L., Kallasi, F., Aleotti, J., Oleari, F., Caselli, S. 2017 *Computer and Electrical Engineering* 58: 560-571.
- [5] Shamsuddoha, Md., Islam, Md. M., Aravinthan, T., Manalo, A., Lau, K. 2013 *Composite Structures* 100: 40-54.

- [6] Sibue, C. Mulyadi, Y., Rochani, I. 2016 *Jurnal Teknik ITS*, Vol. 5, No. 2. ISSN: 2337-3539.
- [7] Yang, L., Nie, S., Yin, S., Zhao, J. Yin, F. 2015 *Ocean Engineering* 104:168-184.
- [8] Zhu, H., You, J., Zhao, H. 2017 *Applied Ocean Research* 64:217-235.
- [9] Guo, B., Song, Shanhong, Ghalambor, A., Lin, T., Chacko, J. 2005 *Gulf Professional Publishing*. ISBN: 9780080456904.
- [10] Hardi, W., Suyono, T. 2016 *Semnas Maritim, Sains dan Teknologi Terapan*, Vol. 01.
- [11] Ibrahim, M., Masrevaniah, A., Dermawan, V. 2012 *Jurnal Pengairan*, Universitas Brawijaya.
- [12] Lock, A., Spiers, G., Hostetler, B., Ray, J., Wallschlager, D. 2016 *Water Research* 93: 289-295.
- [13] Cheng, L., Yeow, K., Zang, Z., Lie, F. 2014 *Coastal Engineering* 83: 137-149.
- [14] Abidin, Z. 2008 *Skripsi*. Fakultas Teknik Sipil dan Lingkungan, Institut Teknologi Bandung.
- [15] Brennan, M. K., Karimi, M., Almeida, F. C. L., de Lima, F. K., Ayala, P. C., Obata, D., Paschoalini, A. T., Kessissoglou, N. 2017 *Procedia Engineering* 199: 1350-1355.
- [16] Supena, M. 2011 *Skripsi*. Fakultas Teknik, Universitas Indonesia.
- [17] Wang, Z., Xiong, W., Ting, D. S. K., Carriveau, R., Wang, Z. 2016 *Applied Energy* 180: 810-822.
- [18] Wang, Y. G., Liao, C. C., Wang, J. H., Jeng, D. S. 2018 *Ocean Engineering* 164: 114-126.
- [19] Cheung, B. C., Carriveau, R., Ting, D. S. K. 2014 *Applied Energy* 134: 239-247.

Source details

IOP Conference Series: Materials Science and Engineering

CiteScore 2018
0.53[i](#)

Scopus coverage years: from 2009 to Present

ISSN: 1757-8981 E-ISSN: 1757-899X

Subject area: [Engineering: General Engineering](#) [Materials Science: General Materials Science](#)SJR 2018
0.192[i](#)[View all documents >](#)[Set document alert](#)[Save to source list](#) [Journal Homepage](#)SNIP 2018
0.531[i](#)[CiteScore](#)[CiteScore rank & trend](#)[CiteScore presets](#)[Scopus content coverage](#)

Year	Documents published	Actions
2020	8,780 documents	View citation overview >
2019	20,504 documents	View citation overview >
2018	15,811 documents	View citation overview >
2017	8,740 documents	View citation overview >
2016	3,676 documents	View citation overview >
2015	2,253 documents	View citation overview >
2014	932 documents	View citation overview >
2013	621 documents	View citation overview >
2012	595 documents	View citation overview >
2011	800 documents	View citation overview >
2010	79 documents	View citation overview >
2009	180 documents	View citation overview >

About Scopus

[What is Scopus](#)[Content coverage](#)[Scopus blog](#)[Scopus API](#)[Privacy matters](#)

Language

[日本語に切り替える](#)[切换到简体中文](#)[切換到繁體中文](#)[Русский язык](#)

Customer Service

[Help](#)[Contact us](#)

IOP Conference Series: Materials Science and Engineering

Country

United Kingdom - SIR Ranking of United Kingdom

24

Subject Area and Category

Engineering
Engineering (miscellaneous)

H Index

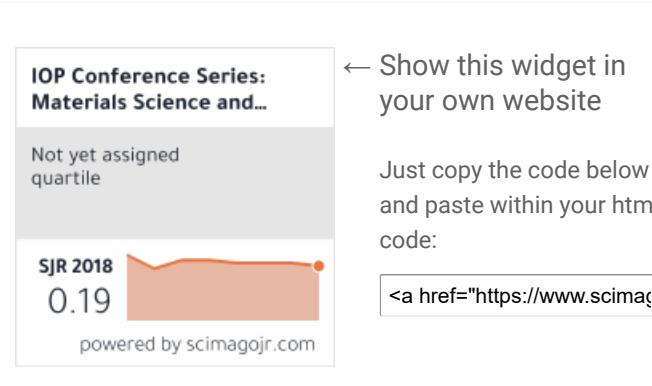
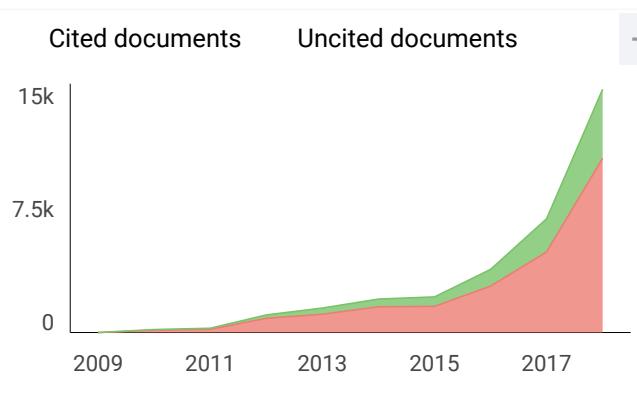
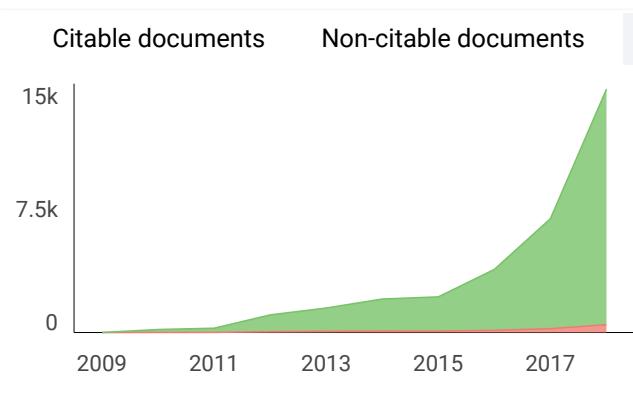
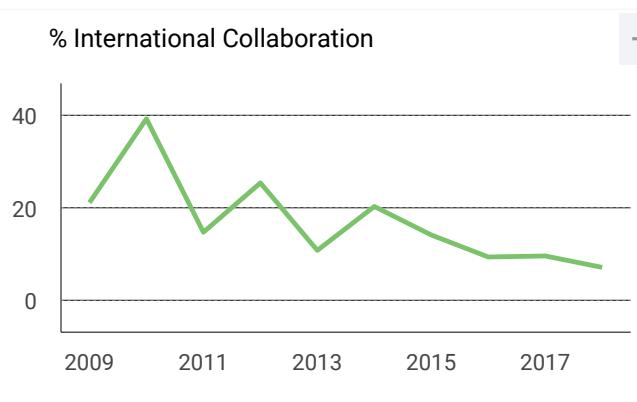
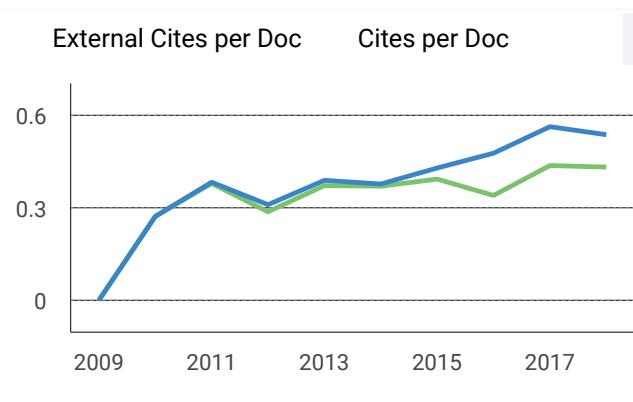
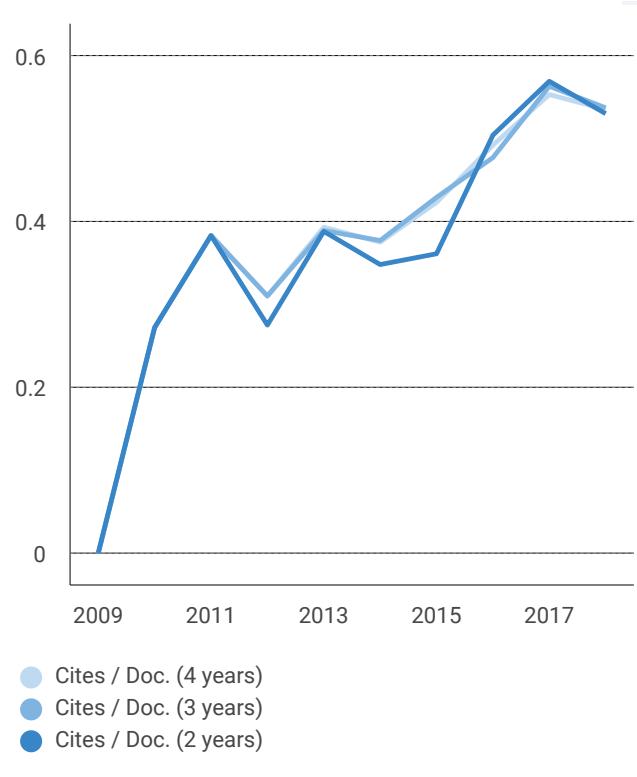
Materials Science
Materials Science (miscellaneous)

Publisher

Conferences and Proceedings

ISSN

17578981, 1757899X

Coverage

2009-ongoing

Scope

The open access IOP Conference Series provides a fast, versatile and cost-effective proceedings publication service for your conference. Key publishing subject areas include: physics, materials science, environmental science, bioscience, engineering, computational science and mathematics.

[Homepage](#)[How to publish in this journal](#)[Contact](#) [Join the conversation about this journal](#)

