
Parallel Processing in Neural Network for Pattern Recognition

Chairisni Lubis1, Lely Hiryanto2, Kurniawan Sulianto3
1Faculty of Information Technology, Tarumanagara University, Jakarta, Indonesia

chairisni@yahoo.com
2Faculty of Information Technology, Tarumanagara University, Jakarta, Indonesia

lely@fti.utara.org
3Faculty of Information Technology, Tarumanagara University, Jakarta, Indonesia

kslian86@gmail.com

Abstract

Perceptron is one of the fundamental algorithms in
neural network for pattern recognition The common
problem faced in recognizing pattern using neural
network is in the learning computation which is time
consuming. To reduce the learning time, we develop a
parallel algorithm for the perceptron learning process.
To support the parallel processing on the cluster, we
use MPICH for Windows as message passing tool and
Visual C++ 6.0 as the editor and compiler of the
parallel pattern recognition program. Our
experimental result of running the program in the
cluster shows that the parallel process gives speedup 3
times of its sequential process.

1. Introduction

Perceptron is one of the fundamental learning
algorithms in neural network. The perceptron
architecture is a single layer and its learning process is
perfomed by finding connection weight (w) of each
pattern target. If an error occurred for a particular
traning pattern the weight would be changed according
to the formula

ijijij xtoldwneww α+=)()((1)

where :
wij (new) : new connection weight
wij (old) : old connection weight
α : learning rate
tj : pattern target
xi : pattern input
If an error did not occur, the weights would not be

changed. Learning process is done when connection
weights are correct for each pattern target.

The training algorithm for several output categories
with α = 1 are [1]

Step 0. Initialize weights and biases
 (0 or small random values).
Step 1. While stopping condition is false, do Steps

2-6.
Step 2. For each bipolar training pairs s:t, do Steps

3-5.
Step 3. Set activation of each input unit,

;,...,1 ni = ii sx =
Step 4. Compute activation of each output unit,

;,...1 mj = ∑+=
i

ijijj wxbiny _

⎪
⎩

⎪
⎨

⎧

−<−

≤≤−

>

=

θ
θθ

θ

j

j

j

j

inyif
inyif

inyif

y
_ 1

_ 0

_ 1

Step 5. Update biases and weight,
;,...1 mj = i ;,...,1 n=

If , then

jj yt ≠

jb (jj toldbnew +=)()

ijijij xtoldwneww +=)()(

Else,biases and weights remain unchanged.
Step 6. Test for stopping condition :

If no weight changes occurred in Step 2, stop;
otherwise, continue.

Fig 1. Perceptron learning algorithm

The common problem faced in recognizing pattern
using perceptron is in the learning computation which
is time consuming. To reduce the learning time, we

Proceedings of the International Graduate on Engineering and Science (IGCES'08)
23 - 24 December © 2008 IGCESComputing and Information Technology

develop a parallel algorithm for the perceptron
learning process.

2. Perceptron in parallel processing

From learning algorithm perceptron in fig. 1 we
seen that the longest computation time in learning
process for computing y_in. Computation proses for n
inputs patterns with m outputs patterns give m linear
equations,

131321211111 ..._ nnwxwxwxwxbiny +++++=

232322212122 ..._ nnwxwxwxwxbiny +++++=

333323213133 ..._ nn wxwxwxwxbiny +++++=
.
.
.

nmnmmmmm wxwxwxwxbiny +++++= ..._ 332211

When connection weights are correct for one

pattern target, the learning process still compute that
connection weight in the next iteration. We try to
reduce the wasted time in learning process by
modifying the algorithm. We use two iteration. If we
found the correct connection weights for one pattern
target then the first iteration is stoped. The second
iteration continue the learning process with another
pattern target. The iteration will stop when connection
weights are correct for each pattern target. Perceptron
learning algorithm modification is as follows

Step 0. Initialize weights and biases
 (0 or small random values).
Step 1. While stopping condition is false, do Steps

2-7.
Step 2. For , do Steps 3-6. mj ,...,1=
Step 3. Set activation of each input unit and output

unit j,
;,...,1 ni = ii sx =

Step 4. Compute activation of each output unit,
 ∑+=

i
ijijj wxbiny _

⎪
⎩

⎪
⎨

⎧

−<−

≤≤−

>

=

θ
θθ

θ

j

j

j

j

inyif
inyif

inyif

y
_ 1

_ 0

_ 1

Step 5. Update biases and weight,
;,...1 mj = ;,...,1 ni =

If , then

jj yt ≠

jb (jj toldbnew +=)()

ijijij xtoldwneww +=)()(

Else,biases and weights remain unchanged.
Step 6. If no weight changes occurred in Step 2,

stop; otherwise, continue.
Step 7. Test for stopping condition :

If no weight changes occurred in Step 2,
stop; otherwise, continue.

Fig 2. Perceptron learning algorithm modification

From m linear equations on above, there are no

dependencies for every weight and bias from one
output to another. Every equation could be done
without any result from computation of another output.
So, every equation could be done with parallel
processing. With parallel processing, every computer
will compute weight and bias of every target on j.

3. Experiment

The sample data that we use for pattern recognition
in experiment are :
- Data pattern : numerical character (0, 1, 2, …9) of

abstract font.

Fig 3. Numerical character of Abstract font
Reference: Dafont.com, Abstract,

http://www.dafont.com/abstract.font?text=0123456789
, August 28, 2008.

- The sample character size : 25 pixel x 35 pixel
- Number of sample : 100
- Every character consist of :

- 1 normal pattern
- 4 dirty pattern (changes randomly several

white colour pixel with black pixel as noises)
- 5 impaired pattern(changes randomly several

black colour pixel with white pixel as noises)
- Noise : 1%, 5%, 10%, 15% and 20%

Fig. 4 was illustrated sequential processing that we
use for computing execution time in sequensial
process. One node in input layer represent one pixel
of input data and nodes in output layer represent output
data (character). So , we have 975 node in input layer
and 10 node in otput layer. Learning rate (α) for
parallel processing determined from lowest

Proceedings of the International Graduate on Engineering and Science (IGCES'08)
23 - 24 December © 2008 IGCESComputing and Information Technology

http://www.dafont.com/abstract.font?text=0123456789

computation time of sequential learning processing
with α = 0.1 to α = 1.0.

Fig 4. Sequential processing illustration

The number of computers could be used for parallel
processing are 2 to 10 computers. This is llustration for
parallel processing (fig. 5) and Clustering on parallel
processing adopting Beowulf cluster (fig. 6).

Fig 5. Parallel processing illustration

Fig 6. Beowulf Cluster
Reference : Wikipedia, Beowulf (computing), http://

en.wikipedia.org/wiki/Image:Beowulf.png, August 23,
2008.

Some software that used for making this application
are:

- Operation System for Server: Microsoft
Windows Server 2003

- Operation System for Client: Microsoft
Windows XP Professional

- Paraller Software : MPICH
- Programming Language : C and VB.Net
- Image Editing : Microsoft Paint

and configuration of hardware and software for
experiment are :
Software (testing):

- Operation System for Server: Microsoft
Windows Server 2003

- Operation System for Client: Microsoft
Windows XP Professional

- Parallel Software : MPICH
- Framework : .Net Framework 2.0 (on Server)

Hardware (testing):

- Processor : Intel® Pentium®4 2.66 GHz
- RAM : 1 GB
- NIC : Broad Com Nextreme Giga bit Ethernet

for HP
- Harddisk : 40 GB

Experiment result for sequential processing and
parallel processing shown on table 1, 2a, and 2b.

Table 1
 Execution time in sequential processing

Noise
(%)

α t
(second)

1 0.2 0.1209
5 1.0 0.1604
10 0.2 0.2430
15 0.7 0.2344
20 0.5 0.2722

Note ;

α : learning rate
 t : execution time

Table 2a.
Parallel processing for noise 1%, 5%, 10%

n t (1%)
α=0.2

t(5%)
α=1.0

t(10%)
α=0.2

2 0.0690 0.0934 0.1292
3 0.0569 0.0703 0.1262
4 0.0553 0.0741 0.1013
5 0.0337 0.0502 0.0918
6 0.0303 0.0545 0.1005

Proceedings of the International Graduate on Engineering and Science (IGCES'08)
23 - 24 December © 2008 IGCESComputing and Information Technology

2. Parallel process that using 10 computers gives
speedup up to 3 times of its sequential process.

7 0.0342 0.0613 0.0876
8 0.0303 0.0458 0.0828
9 0.0296 0.0484 0.0858
10 0.0284 0.0431 0.0803

5. References

Table 2b [1] Fauset, Laurene. Fundamentals of Neural

Networks: Architectures, Algorithms, and
Applications. Englewood Cliffs: Prentice Hall,
1994.

 Parallel processing for noise 15 % and 20%
n t(15%)

α=0.7
t(20%)
α=0.5

2 0.1217 0.1325
3 0.1102 0.1293
4 0.0945 0.1056
5 0.0990 0.1159
6 0.0964 0.1009
7 0.0846 0.0954
8 0.0899 0.1007
9 0.0824 0.0930
10 0.0823 0.0928

[2] Wilkinson, Barry and Allen, Michael. Parallel

Programming: Techniques and Applications Using
Networked Workstations and Parallel Computers
Second Edition. Upper Saddle River: Prentice
Hall, 2005.

 Note :
 n : number of computer

 From table 1, 2a and 2b, we can calculate the speed up

time with:

(2)

p

s

t
tpS =)(

where ;
S(p) : Speed Up
ts : execution time in sequential process

 tp : execution time in parallel process

 Table 3
 Speed Up in parallel process

n Speed Up
2 1.8660
3 2.1132
4 2.3620
5 2.8299
6 2.8956
7 2.9102
8 3.1486
9 3.2000
10 3.3579

4. Conclusion

1. The learning time in perceptron depend on

percentage of noise of every pattern. The higher
noise take more computation time than lowest
noise.

Proceedings of the International Graduate on Engineering and Science (IGCES'08)
23 - 24 December © 2008 IGCESComputing and Information Technology

	1. Introduction
	2. Perceptron in parallel processing
	3. Experiment
	Fig 3. Numerical character of Abstract font
	Note :
	where ;
	S(p) : Speed Up
	4. Conclusion
	5. References

