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Abstract 
 

Perceptron is one of the fundamental algorithms in 
neural network for pattern recognition The common 
problem faced in recognizing pattern using neural 
network is in the learning computation which is time 
consuming. To reduce the learning time, we develop a 
parallel algorithm for the perceptron learning process. 
To support the parallel processing on the cluster, we 
use MPICH for Windows as message passing tool and 
Visual C++ 6.0 as the editor and compiler of the 
parallel pattern recognition program. Our 
experimental result of running the program in the 
cluster shows that the parallel process gives speedup 3 
times of its sequential process. 
 
 
1. Introduction 
 
Perceptron is one of the fundamental learning 
algorithms  in neural network. The perceptron 
architecture is a single layer and its learning process is 
perfomed by finding  connection weight (w) of each 
pattern target. If  an error occurred for a particular 
traning pattern the weight would be changed according 
to the formula 

ijijij xtoldwneww α+= )()(                (1) 

where : 
wij (new) : new connection weight 
wij (old) : old connection weight 
α : learning rate 
tj : pattern target  
xi : pattern input 
If an error did not occur, the weights would not be 

changed. Learning process is done when connection 
weights are correct for each pattern target.  

 
The training algorithm for several output categories 
with α = 1 are [1] 
 
Step 0. Initialize weights and biases 
 (0 or small random values). 
Step 1. While stopping condition is false, do Steps   

2-6. 
Step 2. For each bipolar training pairs s:t, do Steps 

3-5. 
Step 3. Set activation of each input unit,  

;,...,1 ni =   ii sx =
Step 4. Compute activation of each output unit, 
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Step 5. Update biases and weight, 
;,...1 mj =  i   ;,...,1 n=

If  , then 

  
jj yt ≠

jb ( jj toldbnew += )()

ijijij xtoldwneww += )()(  

Else,biases and weights remain unchanged. 
Step 6. Test for stopping condition : 

If no weight changes occurred in Step 2, stop;  
otherwise, continue. 

 
Fig 1.  Perceptron learning algorithm 

 
The common problem faced in recognizing pattern 
using perceptron is in the learning computation which 
is time consuming. To reduce the learning time, we 
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develop a parallel algorithm for the perceptron 
learning process. 
 
2. Perceptron in parallel processing 
 

From learning algorithm perceptron in fig. 1 we 
seen that the longest computation time in learning 
process for computing y_in. Computation proses for n 
inputs patterns with m outputs patterns give m linear 
equations,  

131321211111 ..._ nnwxwxwxwxbiny +++++=

232322212122 ..._ nnwxwxwxwxbiny +++++=

333323213133 ..._ nn wxwxwxwxbiny +++++=
. 
. 
. 

nmnmmmmm wxwxwxwxbiny +++++= ..._ 332211

 
When connection weights are correct for one 

pattern target, the learning process still compute that 
connection weight in the next iteration. We try to 
reduce the wasted time in learning process by 
modifying the algorithm. We use two iteration. If we 
found the correct   connection weights for one pattern 
target then the first iteration is stoped. The second 
iteration continue the learning process with another 
pattern target. The iteration will stop when connection 
weights are correct for each pattern target. Perceptron 
learning algorithm modification is as follows 
 
Step 0. Initialize weights and biases 
 (0 or small random values). 
Step 1. While stopping condition is false, do Steps   

2-7. 
Step 2. For , do Steps 3-6. mj ,...,1=
Step 3. Set activation of each input unit and output 

unit j,  
;,...,1 ni =   ii sx =

Step 4. Compute activation of each output unit, 
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Step 5. Update biases and weight, 
;,...1 mj =    ;,...,1 ni =

If  , then 

  
jj yt ≠

jb ( jj toldbnew += )()

ijijij xtoldwneww += )()(  

Else,biases and weights remain unchanged. 
Step 6.  If no weight changes occurred in Step 2, 

stop;  otherwise, continue. 
Step 7.  Test for stopping condition : 

If no weight changes occurred in Step 2, 
stop;  otherwise, continue. 

 
Fig 2.  Perceptron learning algorithm modification 

 
From m linear equations on above, there are no 

dependencies for every weight and bias from one 
output to another. Every equation could be done 
without any result from computation of another output. 
So, every equation could be done with parallel 
processing. With parallel processing, every computer 
will compute weight and bias of every target on j. 
 
3. Experiment 
 

The sample data that we use for pattern recognition 
in experiment are  : 
-  Data pattern : numerical character (0, 1, 2, …9) of 

abstract font. 
 

 
 

Fig 3. Numerical character of Abstract font 
Reference: Dafont.com, Abstract, 

http://www.dafont.com/abstract.font?text=0123456789
, August 28, 2008. 

 
- The sample character size : 25 pixel x 35 pixel 
- Number of sample : 100  
- Every character consist of : 

- 1 normal pattern 
- 4 dirty pattern (changes randomly several 

white colour pixel with black pixel as noises) 
- 5 impaired pattern(changes randomly several 

black colour pixel with white pixel as noises) 
- Noise : 1%, 5%, 10%, 15% and 20% 
 

Fig. 4 was illustrated sequential processing that we 
use for computing execution time in sequensial 
process.   One node in input layer represent one pixel 
of input data and nodes in output layer represent output 
data (character). So , we have 975 node in input layer 
and 10 node in otput layer. Learning rate (α) for 
parallel processing determined from lowest 
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computation time of sequential learning processing 
with α = 0.1 to α = 1.0. 
 

 
 

Fig 4.  Sequential processing illustration 
 
The number of computers could be used for parallel 
processing are 2 to 10 computers. This is llustration for 
parallel processing (fig. 5) and Clustering on parallel 
processing adopting Beowulf cluster (fig. 6). 

 
 

 
 

Fig 5.  Parallel processing illustration 
 
 

 

 
 

Fig 6.  Beowulf Cluster 
Reference : Wikipedia, Beowulf (computing), http:// 

en.wikipedia.org/wiki/Image:Beowulf.png, August 23, 
2008. 

 

Some software that used for making this application 
are: 

- Operation System for Server: Microsoft 
Windows Server 2003 

- Operation System for Client: Microsoft 
Windows XP Professional 

- Paraller Software : MPICH 
- Programming Language : C and VB.Net 
- Image Editing : Microsoft Paint  

 
and configuration of hardware and software for 
experiment are : 
Software (testing): 

- Operation System for Server: Microsoft 
Windows Server 2003 

- Operation System for Client: Microsoft 
Windows XP Professional 

- Parallel Software : MPICH 
- Framework : .Net Framework 2.0 (on Server) 

 
Hardware (testing): 

- Processor : Intel® Pentium®4 2.66 GHz 
- RAM : 1 GB 
- NIC : Broad Com Nextreme Giga bit Ethernet 

for HP 
- Harddisk : 40 GB 

 
Experiment result for sequential processing and 
parallel processing shown on table 1, 2a, and 2b. 
 

Table 1 
 Execution time in sequential processing 

Noise 
(%) 

α t  
(second) 

1 0.2 0.1209 
5 1.0 0.1604 
10 0.2 0.2430 
15 0.7 0.2344 
20 0.5 0.2722 

 
Note ; 

α : learning rate 
 t : execution time  
 

Table 2a.  
Parallel processing for noise 1%, 5%, 10% 

n t (1%) 
α=0.2 

t(5%) 
α=1.0 

t(10%)
α=0.2  

2 0.0690 0.0934 0.1292 
3 0.0569 0.0703 0.1262 
4 0.0553 0.0741 0.1013 
5 0.0337 0.0502 0.0918 
6 0.0303 0.0545 0.1005 
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2. Parallel process that using 10 computers gives 
speedup up to 3 times of its sequential process. 

7 0.0342 0.0613 0.0876 
8 0.0303 0.0458 0.0828 
9 0.0296 0.0484 0.0858 
10 0.0284 0.0431 0.0803 
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 Parallel processing for noise 15 % and 20% 
n t(15%)  
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4 0.0945 0.1056 
5 0.0990 0.1159 
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Second Edition. Upper Saddle River: Prentice 
Hall, 2005. 

 
 
 

  
 Note : 
  n : number of computer 
  
 From table 1, 2a and 2b, we can calculate the speed up 

time with:  
 

  

(2)
 

p

s

t
tpS =)(  

   
  

where ;  
S(p) : Speed Up  
ts : execution time in sequential process  

 tp : execution time in parallel process 
  
 Table 3 
 Speed Up in parallel process 
   

n Speed Up 
2 1.8660 
3 2.1132 
4 2.3620 
5 2.8299 
6 2.8956 
7 2.9102 
8 3.1486 
9 3.2000 
10 3.3579 

 
 
 
 
 
 
 
 
 

 
4. Conclusion 
 
1. The learning time in perceptron depend on 

percentage of noise of every pattern. The higher 
noise take more computation time than lowest 
noise. 
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