
gsh otak, namun terdapat pola yang 

menunjukkan bahwa penurunan gsh 

darah diikuti dengan penurunan 

kadar gsh otak. Pada pemeriksaan 

patologi anatomi tikus kelompok 

hipoksia 14 hari kontrol ditemukan 

perubahan struktur sel berupa edema 

dan nekrosis pada sel. Sedangkan 

pada tikus hipoksia 14 hari cekok 

ditemukan edema pada sel. 

SARAN 

Dilakukan pemeriksaan kadar 

antioksidan dengan parameter lain 

pada buah maja, diperlukan 

pemeriksaan terhadap kadar GSH 

darah dan otak tikus Sprague Dawley 

yang diberi ekstrak buah maja pada 

dosis dan durasi hipoksia yang 

berbeda, dan diperlukan pemeriksaan 

lebih lanjut terhadap makromolekul 

lainnya seperti lipid, protein dan 

DNA untuk mengukur beratnya stres 

oksidatif dan dikorelasikan dengan 

hasil GSH yang diperoleh.
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